Narrow your search

Library

KU Leuven (3)

VUB (2)

FARO (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

ULiège (1)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2021 (3)

2006 (2)

Listing 1 - 5 of 5
Sort by
The transmission-line modeling (TLM) method in electromagnetics
Author:
ISBN: 1598290517 9781598290516 1598290509 9781598290509 Year: 2006 Publisher: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) Morgan & Claypool Publishers

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents the topic in electromagnetics known as transmission-line modeling or matrix method-TLM. While it is written for engineering students at graduate and advanced undergraduate levels, it is also highly suitable for specialists in computational electromagnetics working in industry, who wish to become familiar with the topic. The main method of implementation of TLM is via the time-domain differential equations, however, this can also be via the frequency-domain differential equations. The emphasis in this book is on the time-domain TLM. Physical concepts are emphasized here before embarking onto mathematical development in order to provide simple, straightforward suggestions for the development of models that can then be readily programmed for further computations. Sections with strong mathematical flavors have been included where there are clear methodological advantages forming the basis for developing practical modeling tools. The book can be read at different depths depending on the background of the reader, and can be consulted as and when the need arises.

Higher order FDTD schemes for waveguide and antenna structures
Authors: ---
ISBN: 1598290290 9781598290295 1598290282 9781598290288 Year: 2006 Publisher: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) Morgan & Claypool Publishers

Loading...
Export citation

Choose an application

Bookmark

Abstract

This publication provides a comprehensive and systematically organized coverage of higher order finite-difference time-domain or FDTD schemes, demonstrating their potential role as a powerful modeling tool in computational electromagnetics. Special emphasis is drawn on the analysis of contemporary waveguide and antenna structures. Acknowledged as a significant breakthrough in the evolution of the original Yee's algorithm, the higher order FDTD operators remain the subject of an ongoing scientific research. Among their indisputable merits, one can distinguish the enhanced levels of accuracy even for coarse grid resolutions, the fast convergence rates, and the adjustable stability. In fact, as the fabrication standards of modern systems get stricter, it is apparent that such properties become very appealing for the accomplishment of elaborate and credible designs.


Book
Numerical and Analytical Methods in Electromagnetics
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Like all branches of physics and engineering, electromagnetics relies on mathematical methods for modeling, simulation, and design procedures in all of its aspects (radiation, propagation, scattering, imaging, etc.). Originally, rigorous analytical techniques were the only machinery available to produce any useful results. In the 1960s and 1970s, emphasis was placed on asymptotic techniques, which produced approximations of the fields for very high frequencies when closed-form solutions were not feasible. Later, when computers demonstrated explosive progress, numerical techniques were utilized to develop approximate results of controllable accuracy for arbitrary geometries. In this Special Issue, the most recent advances in the aforementioned approaches are presented to illustrate the state-of-the-art mathematical techniques in electromagnetics.

Keywords

cubic-quartic Schrödinger equation --- cubic-quartic resonant Schrödinger equation --- parabolic law --- wave field transformation --- finite difference method --- Cole–Cole model --- Monte Carlo simulations --- percolation --- conductivity --- carbon nanotubes composite --- optical parametric amplification --- non-linear wave mixing --- micro-resonator --- optimization --- MRI system --- birdcage coil --- birdcage configurations --- coil capacitance --- analytical solution --- equivalent circuit modelling --- T-matrix theory --- 3D-EM simulation --- small volume RF coil --- method of auxiliary sources (MAS) --- electromagnetic scattering --- wedge --- numerical methods --- accuracy --- coil gun --- reluctance --- electromagnetic launcher --- mechatronics --- electronics --- mechanics --- simulation --- RoboCup --- magnetic field strength --- magnetic flux density --- magnetic potential --- current density --- power transmission line --- electromagnetic modelling --- integral formulation --- skin effect --- thin shell approach --- mutual inductance --- finite element method --- partial element equivalent circuit method --- magnetite nanoparticles --- Mie scattering theory --- near infrared laser --- photothermal therapy --- bioheat transfer --- diffusion approximation --- Arrhenius integral --- breast cancer --- air-core pulsed alternator --- electromagnetic rail launcher --- coupled analysis --- computational electromagnetics --- integral formulations --- n/a --- cubic-quartic Schrödinger equation --- cubic-quartic resonant Schrödinger equation --- Cole-Cole model


Book
Numerical and Analytical Methods in Electromagnetics
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Like all branches of physics and engineering, electromagnetics relies on mathematical methods for modeling, simulation, and design procedures in all of its aspects (radiation, propagation, scattering, imaging, etc.). Originally, rigorous analytical techniques were the only machinery available to produce any useful results. In the 1960s and 1970s, emphasis was placed on asymptotic techniques, which produced approximations of the fields for very high frequencies when closed-form solutions were not feasible. Later, when computers demonstrated explosive progress, numerical techniques were utilized to develop approximate results of controllable accuracy for arbitrary geometries. In this Special Issue, the most recent advances in the aforementioned approaches are presented to illustrate the state-of-the-art mathematical techniques in electromagnetics.

Keywords

History of engineering & technology --- cubic-quartic Schrödinger equation --- cubic-quartic resonant Schrödinger equation --- parabolic law --- wave field transformation --- finite difference method --- Cole-Cole model --- Monte Carlo simulations --- percolation --- conductivity --- carbon nanotubes composite --- optical parametric amplification --- non-linear wave mixing --- micro-resonator --- optimization --- MRI system --- birdcage coil --- birdcage configurations --- coil capacitance --- analytical solution --- equivalent circuit modelling --- T-matrix theory --- 3D-EM simulation --- small volume RF coil --- method of auxiliary sources (MAS) --- electromagnetic scattering --- wedge --- numerical methods --- accuracy --- coil gun --- reluctance --- electromagnetic launcher --- mechatronics --- electronics --- mechanics --- simulation --- RoboCup --- magnetic field strength --- magnetic flux density --- magnetic potential --- current density --- power transmission line --- electromagnetic modelling --- integral formulation --- skin effect --- thin shell approach --- mutual inductance --- finite element method --- partial element equivalent circuit method --- magnetite nanoparticles --- Mie scattering theory --- near infrared laser --- photothermal therapy --- bioheat transfer --- diffusion approximation --- Arrhenius integral --- breast cancer --- air-core pulsed alternator --- electromagnetic rail launcher --- coupled analysis --- computational electromagnetics --- integral formulations --- cubic-quartic Schrödinger equation --- cubic-quartic resonant Schrödinger equation --- parabolic law --- wave field transformation --- finite difference method --- Cole-Cole model --- Monte Carlo simulations --- percolation --- conductivity --- carbon nanotubes composite --- optical parametric amplification --- non-linear wave mixing --- micro-resonator --- optimization --- MRI system --- birdcage coil --- birdcage configurations --- coil capacitance --- analytical solution --- equivalent circuit modelling --- T-matrix theory --- 3D-EM simulation --- small volume RF coil --- method of auxiliary sources (MAS) --- electromagnetic scattering --- wedge --- numerical methods --- accuracy --- coil gun --- reluctance --- electromagnetic launcher --- mechatronics --- electronics --- mechanics --- simulation --- RoboCup --- magnetic field strength --- magnetic flux density --- magnetic potential --- current density --- power transmission line --- electromagnetic modelling --- integral formulation --- skin effect --- thin shell approach --- mutual inductance --- finite element method --- partial element equivalent circuit method --- magnetite nanoparticles --- Mie scattering theory --- near infrared laser --- photothermal therapy --- bioheat transfer --- diffusion approximation --- Arrhenius integral --- breast cancer --- air-core pulsed alternator --- electromagnetic rail launcher --- coupled analysis --- computational electromagnetics --- integral formulations


Book
Numerical and Analytical Methods in Electromagnetics
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Like all branches of physics and engineering, electromagnetics relies on mathematical methods for modeling, simulation, and design procedures in all of its aspects (radiation, propagation, scattering, imaging, etc.). Originally, rigorous analytical techniques were the only machinery available to produce any useful results. In the 1960s and 1970s, emphasis was placed on asymptotic techniques, which produced approximations of the fields for very high frequencies when closed-form solutions were not feasible. Later, when computers demonstrated explosive progress, numerical techniques were utilized to develop approximate results of controllable accuracy for arbitrary geometries. In this Special Issue, the most recent advances in the aforementioned approaches are presented to illustrate the state-of-the-art mathematical techniques in electromagnetics.

Keywords

History of engineering & technology --- cubic-quartic Schrödinger equation --- cubic-quartic resonant Schrödinger equation --- parabolic law --- wave field transformation --- finite difference method --- Cole–Cole model --- Monte Carlo simulations --- percolation --- conductivity --- carbon nanotubes composite --- optical parametric amplification --- non-linear wave mixing --- micro-resonator --- optimization --- MRI system --- birdcage coil --- birdcage configurations --- coil capacitance --- analytical solution --- equivalent circuit modelling --- T-matrix theory --- 3D-EM simulation --- small volume RF coil --- method of auxiliary sources (MAS) --- electromagnetic scattering --- wedge --- numerical methods --- accuracy --- coil gun --- reluctance --- electromagnetic launcher --- mechatronics --- electronics --- mechanics --- simulation --- RoboCup --- magnetic field strength --- magnetic flux density --- magnetic potential --- current density --- power transmission line --- electromagnetic modelling --- integral formulation --- skin effect --- thin shell approach --- mutual inductance --- finite element method --- partial element equivalent circuit method --- magnetite nanoparticles --- Mie scattering theory --- near infrared laser --- photothermal therapy --- bioheat transfer --- diffusion approximation --- Arrhenius integral --- breast cancer --- air-core pulsed alternator --- electromagnetic rail launcher --- coupled analysis --- computational electromagnetics --- integral formulations --- n/a --- cubic-quartic Schrödinger equation --- cubic-quartic resonant Schrödinger equation --- Cole-Cole model

Listing 1 - 5 of 5
Sort by