Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

ULiège (1)

VIVES (1)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2021 (3)

Listing 1 - 3 of 3
Sort by

Book
Mathematical Models for the Design of Electrical Machines
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a comprehensive set of articles reflecting the latest advances and developments in mathematical modeling and the design of electrical machines for different applications. The main models discussed are based on the: i) Maxwell–Fourier method (i.e., the formal resolution of Maxwell’s equations by using the separation of variables method and the Fourier’s series in 2-D or 3-D with a quasi-Cartesian or polar coordinate system); ii) electrical, thermal and magnetic equivalent circuit; iii) hybrid model. In these different papers, the numerical method and the experimental tests have been used as comparisons or validations.

Keywords

History of engineering & technology --- surface-mounted PM machines --- torque pulsation --- magnet shape optimization --- analytical expression --- 2D --- electromagnetic performances --- finite iron relative permeability --- numerical --- sinusoidal current excitation --- subdomain technique --- switched reluctance machine --- scattering matrix --- Fourier analysis --- permanent magnet machines --- analytical modeling --- analytical model --- high-speed --- sleeve --- non-homogeneous permeability --- permanent-magnet --- partial differential equations --- separation of variable technique --- electrical machines --- surface inset permanent magnet --- electric machines --- permanent magnet motor --- rotating machines --- hybrid excitation --- magnetic equivalent circuits --- 3D finite element method --- eddy-current losses --- experiment --- hybrid model --- magnetic equivalent circuit --- Maxwell–Fourier method --- analytical method --- eddy-current --- finite-element analysis --- loss reduction --- permanent-magnet losses --- thermal analysis --- linear induction motors --- complex harmonic modeling --- hybrid analytical modeling --- 2D steady-state models --- multiphase induction machine --- reduced order --- rotor cage --- torque pulsations --- multi-phase --- segmentation --- synchronous machines --- thermal equivalence circuit --- Voronoï tessellation --- winding heads --- nodal method --- thermal resistances --- n/a --- Maxwell-Fourier method --- Voronoï tessellation


Book
Mathematical Models for the Design of Electrical Machines
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a comprehensive set of articles reflecting the latest advances and developments in mathematical modeling and the design of electrical machines for different applications. The main models discussed are based on the: i) Maxwell–Fourier method (i.e., the formal resolution of Maxwell’s equations by using the separation of variables method and the Fourier’s series in 2-D or 3-D with a quasi-Cartesian or polar coordinate system); ii) electrical, thermal and magnetic equivalent circuit; iii) hybrid model. In these different papers, the numerical method and the experimental tests have been used as comparisons or validations.

Keywords

History of engineering & technology --- surface-mounted PM machines --- torque pulsation --- magnet shape optimization --- analytical expression --- 2D --- electromagnetic performances --- finite iron relative permeability --- numerical --- sinusoidal current excitation --- subdomain technique --- switched reluctance machine --- scattering matrix --- Fourier analysis --- permanent magnet machines --- analytical modeling --- analytical model --- high-speed --- sleeve --- non-homogeneous permeability --- permanent-magnet --- partial differential equations --- separation of variable technique --- electrical machines --- surface inset permanent magnet --- electric machines --- permanent magnet motor --- rotating machines --- hybrid excitation --- magnetic equivalent circuits --- 3D finite element method --- eddy-current losses --- experiment --- hybrid model --- magnetic equivalent circuit --- Maxwell–Fourier method --- analytical method --- eddy-current --- finite-element analysis --- loss reduction --- permanent-magnet losses --- thermal analysis --- linear induction motors --- complex harmonic modeling --- hybrid analytical modeling --- 2D steady-state models --- multiphase induction machine --- reduced order --- rotor cage --- torque pulsations --- multi-phase --- segmentation --- synchronous machines --- thermal equivalence circuit --- Voronoï tessellation --- winding heads --- nodal method --- thermal resistances --- n/a --- Maxwell-Fourier method --- Voronoï tessellation


Book
Mathematical Models for the Design of Electrical Machines
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a comprehensive set of articles reflecting the latest advances and developments in mathematical modeling and the design of electrical machines for different applications. The main models discussed are based on the: i) Maxwell–Fourier method (i.e., the formal resolution of Maxwell’s equations by using the separation of variables method and the Fourier’s series in 2-D or 3-D with a quasi-Cartesian or polar coordinate system); ii) electrical, thermal and magnetic equivalent circuit; iii) hybrid model. In these different papers, the numerical method and the experimental tests have been used as comparisons or validations.

Listing 1 - 3 of 3
Sort by