Narrow your search

Library

ULiège (2)

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

VIVES (1)

Vlaams Parlement (1)


Resource type

book (2)

dissertation (1)


Language

English (3)


Year
From To Submit

2024 (1)

2022 (2)

Listing 1 - 3 of 3
Sort by

Dissertation
Mitigating Defects in LDPE Films: Role of Process Parameters, Contaminants, and Compatibilizers in Extrusion Processes
Authors: --- --- --- --- --- et al.
Year: 2024 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Annually, the global production of plastics amounts to 400 million metric tons of which 100 metric tons is polyethylene (PE). Approximately 22% of the total PE produced globally is low-density polyethylene (LDPE). LDPE is primarily used in packaging applications, including films, bags, containers, and dispensing bottles, as well as various molded products. Despite its diverse uses, packaging remains the most predominant application for LDPE. Further, the rising demand for multifunctional packaging has led to complex material blends which complicate the recycling process due to compatibility issues and defects in recyclates. Therefore, opening avenues for mechanical recycling. Efficient mechanical recycling requires effective compatibilization strategies, particularly through optimized re-extrusion processes.
This study focusses on the re-extrusion of recycled LDPE (r-LDPE). A comprehensive literature review was conducted to identify the state-of-the-art on the re-extrusion of polymers and its important process parameters. Further, the study also highlights the types of visual defects in polymeric films and ways to characterize them. This study examines the impact of multiple re-extrusion cycles and various extrusion process parameters: feed method (volumetric and gravimetric), temperature, screw profiles (MODIFIED and STANDARD), degassing on the quality of rLDPE materials. Additionally, the influence of common contaminants such as, polyamide-6 (PA6), polypropylene (PP), and linear low-density polyethylene (LLDPE)) and the compatibilizer PE-grafted maleic anhydride (PE-g-MA) on the quality of recyclates is evaluated. For this, the frequency of visual defects is counted, and types of defects are analyzed. Further, a correlation is drawn between the flow properties of the samples. Additionally, the rheological and mechanical properties of some samples were also analyzed. Finally, the key findings were validated further by the processing of rLDPE with PEg-MA.


Book
Recycling and Resource Recovery from Polymers
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Environmental challenges posed by wrong end of lifeplastic management drive the plastics recycling schemes for energy recovery and cutting emissions, penalties, energy consumption, non-renewable resources, and manufacturing costs. Plastic recycling has the lowest environmental impact on global warming potential and total energy use. However, under-utilised plastic wastes due to low value issues with sorting/contamination pose major challenges. Novel technologies drive innovation in a circular economy model for plastics and employ reuse, recycling and responsible manufacture solutions, support the development of new industries and jobs, reduce emissions and increase efficient use of natural resources (including energy, water and materials). Many economies are working towards achieving a zero plastic waste economy. This Special Issue covers the applications of recycled plastics in the areas of energy recovery/alternative fuels, economic analyses, bitumen additives, flame retardants, recycled polymer nanocomposites to enhance the mechanical property, thermomechanical recycling to improve physical properties, mechano-chemical treatment, cryogenic waste tyre recycling, application in decarbonizing technology, e.g., cement industry, waste characterization, improving agricultural soil quality, as smart fertilizers. The Editors express their appreciation to all the contributors across the world in the development of this reprint. This reprint gives different perspectives and technical ideas for the transformation of plastic wastes into value-added products and to achieve higher recycling rates in the coming years.

Keywords

Research & information: general --- Environmental economics --- Pollution control --- lignin --- bituminous modifier --- lignin modified bitumen --- chemical analysis --- rheological behavior --- mechanical properties --- road engineering --- open graded friction course --- viscoelastic properties --- creep compliance --- relaxation modulus --- dynamic modulus --- linear correlation --- polymer-modified asphalt --- Hamburg wheel-tracking --- indirect tensile strength --- co-pyrolysis --- synergy --- kinetics --- plastic waste --- animal manure --- cement decarbonization --- waste utilization --- co-pyro-gasification --- carbon conversions --- non-soot catalysts --- clean energy --- polymer --- rubber --- recycling --- cryoagent --- liquid nitrogen --- waste tire --- thermal conductivity --- post-consumer waste --- mechanical recycling --- polyethylene --- polypropylene --- contamination --- composition --- tensile properties --- impact properties --- compatibilisation --- polymer based post-consumer waste --- mechano-chemical treatment --- ball milling --- thiol-ene --- carbon nanotubes --- polysilicone --- functionalization --- flame retardancy --- dispersion --- epoxy resin --- silicone --- thermal degradation --- activation energy --- poly (l-lactic acid) --- poly (3-hydroxybutyrate-co-3-hydroxyvalerate) --- non-isothermal crystallisation kinetics --- circular economy --- circo-economics --- material circularity indicator --- packaging --- recycled opaque PET --- reactive extrusion --- chain extension --- long-chain branching --- polyethylene-modified bitumen --- wax-based additives --- rutting --- linear viscoelastic properties --- combustion --- automotive shredder residue --- solid recovered fuel --- alternative fuels --- sustainable energy --- waste-to-energy --- lignin --- bituminous modifier --- lignin modified bitumen --- chemical analysis --- rheological behavior --- mechanical properties --- road engineering --- open graded friction course --- viscoelastic properties --- creep compliance --- relaxation modulus --- dynamic modulus --- linear correlation --- polymer-modified asphalt --- Hamburg wheel-tracking --- indirect tensile strength --- co-pyrolysis --- synergy --- kinetics --- plastic waste --- animal manure --- cement decarbonization --- waste utilization --- co-pyro-gasification --- carbon conversions --- non-soot catalysts --- clean energy --- polymer --- rubber --- recycling --- cryoagent --- liquid nitrogen --- waste tire --- thermal conductivity --- post-consumer waste --- mechanical recycling --- polyethylene --- polypropylene --- contamination --- composition --- tensile properties --- impact properties --- compatibilisation --- polymer based post-consumer waste --- mechano-chemical treatment --- ball milling --- thiol-ene --- carbon nanotubes --- polysilicone --- functionalization --- flame retardancy --- dispersion --- epoxy resin --- silicone --- thermal degradation --- activation energy --- poly (l-lactic acid) --- poly (3-hydroxybutyrate-co-3-hydroxyvalerate) --- non-isothermal crystallisation kinetics --- circular economy --- circo-economics --- material circularity indicator --- packaging --- recycled opaque PET --- reactive extrusion --- chain extension --- long-chain branching --- polyethylene-modified bitumen --- wax-based additives --- rutting --- linear viscoelastic properties --- combustion --- automotive shredder residue --- solid recovered fuel --- alternative fuels --- sustainable energy --- waste-to-energy


Book
Recycling and Resource Recovery from Polymers
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Environmental challenges posed by wrong end of lifeplastic management drive the plastics recycling schemes for energy recovery and cutting emissions, penalties, energy consumption, non-renewable resources, and manufacturing costs. Plastic recycling has the lowest environmental impact on global warming potential and total energy use. However, under-utilised plastic wastes due to low value issues with sorting/contamination pose major challenges. Novel technologies drive innovation in a circular economy model for plastics and employ reuse, recycling and responsible manufacture solutions, support the development of new industries and jobs, reduce emissions and increase efficient use of natural resources (including energy, water and materials). Many economies are working towards achieving a zero plastic waste economy. This Special Issue covers the applications of recycled plastics in the areas of energy recovery/alternative fuels, economic analyses, bitumen additives, flame retardants, recycled polymer nanocomposites to enhance the mechanical property, thermomechanical recycling to improve physical properties, mechano-chemical treatment, cryogenic waste tyre recycling, application in decarbonizing technology, e.g., cement industry, waste characterization, improving agricultural soil quality, as smart fertilizers. The Editors express their appreciation to all the contributors across the world in the development of this reprint. This reprint gives different perspectives and technical ideas for the transformation of plastic wastes into value-added products and to achieve higher recycling rates in the coming years.

Keywords

lignin --- bituminous modifier --- lignin modified bitumen --- chemical analysis --- rheological behavior --- mechanical properties --- road engineering --- open graded friction course --- viscoelastic properties --- creep compliance --- relaxation modulus --- dynamic modulus --- linear correlation --- polymer-modified asphalt --- Hamburg wheel-tracking --- indirect tensile strength --- co-pyrolysis --- synergy --- kinetics --- plastic waste --- animal manure --- cement decarbonization --- waste utilization --- co-pyro-gasification --- carbon conversions --- non-soot catalysts --- clean energy --- polymer --- rubber --- recycling --- cryoagent --- liquid nitrogen --- waste tire --- thermal conductivity --- post-consumer waste --- mechanical recycling --- polyethylene --- polypropylene --- contamination --- composition --- tensile properties --- impact properties --- compatibilisation --- polymer based post-consumer waste --- mechano-chemical treatment --- ball milling --- thiol-ene --- carbon nanotubes --- polysilicone --- functionalization --- flame retardancy --- dispersion --- epoxy resin --- silicone --- thermal degradation --- activation energy --- poly (l-lactic acid) --- poly (3-hydroxybutyrate-co-3-hydroxyvalerate) --- non-isothermal crystallisation kinetics --- circular economy --- circo-economics --- material circularity indicator --- packaging --- recycled opaque PET --- reactive extrusion --- chain extension --- long-chain branching --- polyethylene-modified bitumen --- wax-based additives --- rutting --- linear viscoelastic properties --- combustion --- automotive shredder residue --- solid recovered fuel --- alternative fuels --- sustainable energy --- waste-to-energy --- n/a

Listing 1 - 3 of 3
Sort by