Listing 1 - 10 of 15 | << page >> |
Sort by
|
Choose an application
Eines der größten Probleme der syntaktischen Analyse von Vergleichskonstruktionen liegt darin, dass Komparator (z.B. dt. -er, it. più) und Standardmarker (z.B. dt. als, it. di) offensichtlich eine diskontinuierliche Einheit bilden. Die Erfassung dieser Diskontinuität beschäftigt seit Jahrzehnten die Forschung zu Vergleichskonstruktionen. Die vorliegende Untersuchung schlägt einerseits eine Einbettung der Einheit aus Komparator und Standardmarker in die Komplementposition des Restriktors vor. Andererseits wird die Linarisierung der Vergleichskonstruktion durch die Annahme weiterer Mechanismen erklärt, die durch die Verknüpfung der funktionalen Struktur und der Semantik des Restriktors motiviert sind. Diese werden im Rahmen des Sondenmodells des neueren Minimalismus formalisiert. Unterschiede in der Distribution der Komparatoren werden durch die Late Insertion der Distributed Morphology erfasst, wonach funktionale Elemente erst postsyntaktisch mit phonologischem Material versehen werden. Dadurch kann eine einheitliche syntaktische Analyse von Vergleichskonstruktionen vorgeschlagen werden, die keine konstruktionsspezifischen Annahmen benötigt.
Italian language --- Italien (Langue) --- Comparison --- Comparative clauses --- Comparaison --- Comparatives --- Italian -- Comparison theorem -- Contrastive morphology. --- Italian language -- Comparative clauses. --- Italian language -- Comparison. --- Italian language -- Lexicology. --- Italian language. --- Comparative clauses. --- Romance languages --- Grammar. --- Syntax. --- Italian / Language. --- Linguistics.
Choose an application
This book studies the intersection cohomology of the Shimura varieties associated to unitary groups of any rank over Q. In general, these varieties are not compact. The intersection cohomology of the Shimura variety associated to a reductive group G carries commuting actions of the absolute Galois group of the reflex field and of the group G(Af) of finite adelic points of G. The second action can be studied on the set of complex points of the Shimura variety. In this book, Sophie Morel identifies the Galois action--at good places--on the G(Af)-isotypical components of the cohomology. Morel uses the method developed by Langlands, Ihara, and Kottwitz, which is to compare the Grothendieck-Lefschetz fixed point formula and the Arthur-Selberg trace formula. The first problem, that of applying the fixed point formula to the intersection cohomology, is geometric in nature and is the object of the first chapter, which builds on Morel's previous work. She then turns to the group-theoretical problem of comparing these results with the trace formula, when G is a unitary group over Q. Applications are then given. In particular, the Galois representation on a G(Af)-isotypical component of the cohomology is identified at almost all places, modulo a non-explicit multiplicity. Morel also gives some results on base change from unitary groups to general linear groups.
Shimura varieties. --- Homology theory. --- Cohomology theory --- Contrahomology theory --- Algebraic topology --- Varieties, Shimura --- Arithmetical algebraic geometry --- Accuracy and precision. --- Adjoint. --- Algebraic closure. --- Archimedean property. --- Automorphism. --- Base change map. --- Base change. --- Calculation. --- Clay Mathematics Institute. --- Coefficient. --- Compact element. --- Compact space. --- Comparison theorem. --- Conjecture. --- Connected space. --- Connectedness. --- Constant term. --- Corollary. --- Duality (mathematics). --- Existential quantification. --- Exterior algebra. --- Finite field. --- Finite set. --- Fundamental lemma (Langlands program). --- Galois group. --- General linear group. --- Haar measure. --- Hecke algebra. --- Homomorphism. --- L-function. --- Logarithm. --- Mathematical induction. --- Mathematician. --- Maximal compact subgroup. --- Maximal ideal. --- Morphism. --- Neighbourhood (mathematics). --- Open set. --- Parabolic induction. --- Permutation. --- Prime number. --- Ramanujan–Petersson conjecture. --- Reductive group. --- Ring (mathematics). --- Scientific notation. --- Shimura variety. --- Simply connected space. --- Special case. --- Sub"ient. --- Subalgebra. --- Subgroup. --- Symplectic group. --- Theorem. --- Trace formula. --- Unitary group. --- Weyl group.
Choose an application
The description for this book, Contributions to Fourier Analysis. (AM-25), will be forthcoming.
Fourier analysis. --- Analysis, Fourier --- Mathematical analysis --- Absolute value. --- Almost periodic function. --- Approximation. --- Bessel function. --- Bilinear map. --- Boundary value problem. --- Characterization (mathematics). --- Coefficient. --- Compact space. --- Comparison theorem. --- Conservative vector field. --- Constant function. --- Continuous function. --- Corollary. --- Counterexample. --- Diagonalization. --- Diagram (category theory). --- Diameter. --- Dimension. --- Dirichlet kernel. --- Dirichlet problem. --- Dirichlet's principle. --- Distribution function. --- Exponential polynomial. --- Exponential sum. --- Fourier series. --- Fourier transform. --- Harmonic function. --- Hilbert space. --- Hölder's inequality. --- Integer. --- Interpolation theorem. --- Linear combination. --- Lp space. --- Measurable function. --- Measure (mathematics). --- Partial derivative. --- Partial differential equation. --- Periodic function. --- Poisson formula. --- Polynomial. --- Power series. --- Quantity. --- Rectangle. --- Remainder. --- Semicircle. --- Several complex variables. --- Sign (mathematics). --- Simple function. --- Special case. --- Sphere. --- Square root. --- Step function. --- Subsequence. --- Subset. --- Theorem. --- Theory. --- Triangle inequality. --- Two-dimensional space. --- Uniform continuity. --- Uniform convergence. --- Variable (mathematics). --- Vector field. --- Vector space.
Choose an application
This book discusses some aspects of the theory of partial differential equations from the viewpoint of probability theory. It is intended not only for specialists in partial differential equations or probability theory but also for specialists in asymptotic methods and in functional analysis. It is also of interest to physicists who use functional integrals in their research. The work contains results that have not previously appeared in book form, including research contributions of the author.
Partial differential equations --- Differential equations, Partial. --- Probabilities. --- Integration, Functional. --- Functional integration --- Functional analysis --- Integrals, Generalized --- Probability --- Statistical inference --- Combinations --- Mathematics --- Chance --- Least squares --- Mathematical statistics --- Risk --- A priori estimate. --- Absolute continuity. --- Almost surely. --- Analytic continuation. --- Axiom. --- Big O notation. --- Boundary (topology). --- Boundary value problem. --- Bounded function. --- Calculation. --- Cauchy problem. --- Central limit theorem. --- Characteristic function (probability theory). --- Chebyshev's inequality. --- Coefficient. --- Comparison theorem. --- Continuous function (set theory). --- Continuous function. --- Convergence of random variables. --- Cylinder set. --- Degeneracy (mathematics). --- Derivative. --- Differential equation. --- Differential operator. --- Diffusion equation. --- Diffusion process. --- Dimension (vector space). --- Direct method in the calculus of variations. --- Dirichlet boundary condition. --- Dirichlet problem. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Elliptic operator. --- Elliptic partial differential equation. --- Equation. --- Existence theorem. --- Exponential function. --- Feynman–Kac formula. --- Fokker–Planck equation. --- Function space. --- Functional analysis. --- Fundamental solution. --- Gaussian measure. --- Girsanov theorem. --- Hessian matrix. --- Hölder condition. --- Independence (probability theory). --- Integral curve. --- Integral equation. --- Invariant measure. --- Iterated logarithm. --- Itô's lemma. --- Joint probability distribution. --- Laplace operator. --- Laplace's equation. --- Lebesgue measure. --- Limit (mathematics). --- Limit cycle. --- Limit point. --- Linear differential equation. --- Linear map. --- Lipschitz continuity. --- Markov chain. --- Markov process. --- Markov property. --- Maximum principle. --- Mean value theorem. --- Measure (mathematics). --- Modulus of continuity. --- Moment (mathematics). --- Monotonic function. --- Navier–Stokes equations. --- Nonlinear system. --- Ordinary differential equation. --- Parameter. --- Partial differential equation. --- Periodic function. --- Poisson kernel. --- Probabilistic method. --- Probability space. --- Probability theory. --- Probability. --- Random function. --- Regularization (mathematics). --- Schrödinger equation. --- Self-adjoint operator. --- Sign (mathematics). --- Simultaneous equations. --- Smoothness. --- State-space representation. --- Stochastic calculus. --- Stochastic differential equation. --- Stochastic. --- Support (mathematics). --- Theorem. --- Theory. --- Uniqueness theorem. --- Variable (mathematics). --- Weak convergence (Hilbert space). --- Wiener process.
Choose an application
Based on a seminar sponsored by the Institute for Advanced Study in 1977-1978, this set of papers introduces micro-local analysis concisely and clearly to mathematicians with an analytical background. The papers treat the theory of microfunctions and applications such as boundary values of elliptic partial differential equations, propagation of singularities in the vicinity of degenerate characteristics, holonomic systems, Feynman integrals from the hyperfunction point of view, and harmonic analysis on Lie groups.
Mathematical analysis --- Differential geometry. Global analysis --- 517.98 --- -Advanced calculus --- Analysis (Mathematics) --- Algebra --- Functional analysis and operator theory --- Addresses, essays, lectures --- Mathematical analysis. --- Addresses, essays, lectures. --- -517.1 Mathematical analysis --- 517.98 Functional analysis and operator theory --- -Functional analysis and operator theory --- -517.98 Functional analysis and operator theory --- 517.1 Mathematical analysis --- 517.1. --- 517.1 --- Addition. --- Analytic function. --- Analytic manifold. --- Asymptotic analysis. --- Bernhard Riemann. --- Boundary value problem. --- Bounded operator. --- Cartan subgroup. --- Characterization (mathematics). --- Class function (algebra). --- Closed-form expression. --- Codimension. --- Cohomology. --- Compact space. --- Comparison theorem. --- Contact geometry. --- Continuous function. --- Continuous linear operator. --- Convex hull. --- Cotangent bundle. --- D-module. --- Degenerate bilinear form. --- Diagonal matrix. --- Differentiable manifold. --- Differential operator. --- Dimension (vector space). --- Dimension. --- Elliptic partial differential equation. --- Equation. --- Existence theorem. --- Fourier integral operator. --- Generic point. --- Group theory. --- Harmonic analysis. --- Holomorphic function. --- Holonomic. --- Homogeneous space. --- Hyperfunction. --- Hypersurface. --- Identity element. --- Irreducible representation. --- Killing form. --- Lagrangian (field theory). --- Lie algebra. --- Lie group. --- Linear differential equation. --- Locally compact space. --- Masaki Kashiwara. --- Maximal ideal. --- Monodromy. --- Natural number. --- Neighbourhood (mathematics). --- Ordinary differential equation. --- Orthogonal complement. --- Partial differential equation. --- Path integral formulation. --- Proper map. --- Pseudo-differential operator. --- Regularity theorem. --- Sigurdur Helgason (mathematician). --- Submanifold. --- Subset. --- Summation. --- Symmetric space. --- Symplectic geometry. --- Tangent cone. --- Theorem. --- Topological space. --- Vector bundle. --- Victor Guillemin. --- Weyl group. --- Analyse microlocale
Choose an application
The original goal that ultimately led to this volume was the construction of "motivic cohomology theory," whose existence was conjectured by A. Beilinson and S. Lichtenbaum. This is achieved in the book's fourth paper, using results of the other papers whose additional role is to contribute to our understanding of various properties of algebraic cycles. The material presented provides the foundations for the recent proof of the celebrated "Milnor Conjecture" by Vladimir Voevodsky. The theory of sheaves of relative cycles is developed in the first paper of this volume. The theory of presheaves with transfers and more specifically homotopy invariant presheaves with transfers is the main theme of the second paper. The Friedlander-Lawson moving lemma for families of algebraic cycles appears in the third paper in which a bivariant theory called bivariant cycle cohomology is constructed. The fifth and last paper in the volume gives a proof of the fact that bivariant cycle cohomology groups are canonically isomorphic (in appropriate cases) to Bloch's higher Chow groups, thereby providing a link between the authors' theory and Bloch's original approach to motivic (co-)homology.
Bundeltheorie --- Cohomology [Sheaf ] --- Faisceaux [Théorie des ] --- Sheaf cohomology --- Sheaf theory --- Sheaves (Algebraic topology) --- Sheaves [Theory of ] --- Théorie des faisceaux --- Algebraic cycles --- Homology theory --- Algebraic cycles. --- Homology theory. --- Cohomology theory --- Contrahomology theory --- Algebraic topology --- Cycles, Algebraic --- Geometry, Algebraic --- Abelian category. --- Abelian group. --- Addition. --- Additive category. --- Adjoint functors. --- Affine space. --- Affine variety. --- Alexander Grothendieck. --- Algebraic K-theory. --- Algebraic cycle. --- Algebraically closed field. --- Andrei Suslin. --- Associative property. --- Base change. --- Category of abelian groups. --- Chain complex. --- Chow group. --- Closed immersion. --- Codimension. --- Coefficient. --- Cohomology. --- Cokernel. --- Commutative property. --- Commutative ring. --- Compactification (mathematics). --- Comparison theorem. --- Computation. --- Connected component (graph theory). --- Connected space. --- Corollary. --- Diagram (category theory). --- Dimension. --- Discrete valuation ring. --- Disjoint union. --- Divisor. --- Embedding. --- Endomorphism. --- Epimorphism. --- Exact sequence. --- Existential quantification. --- Field of fractions. --- Functor. --- Generic point. --- Geometry. --- Grothendieck topology. --- Homeomorphism. --- Homogeneous coordinates. --- Homology (mathematics). --- Homomorphism. --- Homotopy category. --- Homotopy. --- Injective sheaf. --- Irreducible component. --- K-theory. --- Mathematical induction. --- Mayer–Vietoris sequence. --- Milnor K-theory. --- Monoid. --- Monoidal category. --- Monomorphism. --- Morphism of schemes. --- Morphism. --- Motivic cohomology. --- Natural transformation. --- Nisnevich topology. --- Noetherian. --- Open set. --- Pairing. --- Perfect field. --- Permutation. --- Picard group. --- Presheaf (category theory). --- Projective space. --- Projective variety. --- Proper morphism. --- Quasi-projective variety. --- Residue field. --- Resolution of singularities. --- Scientific notation. --- Sheaf (mathematics). --- Simplicial complex. --- Simplicial set. --- Singular homology. --- Smooth scheme. --- Spectral sequence. --- Subcategory. --- Subgroup. --- Summation. --- Support (mathematics). --- Tensor product. --- Theorem. --- Topology. --- Triangulated category. --- Type theory. --- Universal coefficient theorem. --- Variable (mathematics). --- Vector bundle. --- Vladimir Voevodsky. --- Zariski topology. --- Zariski's main theorem. --- 512.73 --- 512.73 Cohomology theory of algebraic varieties and schemes --- Cohomology theory of algebraic varieties and schemes
Choose an application
Outer billiards provides a toy model for planetary motion and exhibits intricate and mysterious behavior even for seemingly simple examples. It is a dynamical system in which a particle in the plane moves around the outside of a convex shape according to a scheme that is reminiscent of ordinary billiards. The Plaid Model, which is a self-contained sequel to Richard Schwartz's Outer Billiards on Kites, provides a combinatorial model for orbits of outer billiards on kites.Schwartz relates these orbits to such topics as polytope exchange transformations, renormalization, continued fractions, corner percolation, and the Truchet tile system. The combinatorial model, called "the plaid model," has a self-similar structure that blends geometry and elementary number theory. The results were discovered through computer experimentation and it seems that the conclusions would be extremely difficult to reach through traditional mathematics.The book includes an extensive computer program that allows readers to explore materials interactively and each theorem is accompanied by a computer demo.
Hyperbolic spaces. --- Singularities (Mathematics) --- Transformations (Mathematics) --- Geometry, Plane. --- Plane geometry --- Algorithms --- Differential invariants --- Geometry, Differential --- Geometry, Algebraic --- Hyperbolic complex manifolds --- Manifolds, Hyperbolic complex --- Spaces, Hyperbolic --- Geometry, Non-Euclidean --- 1-dimensional wordlines. --- Bad Tile Lemma. --- Box Theorem. --- Copy Lemma. --- Copy Theorem. --- Curve Turning Theorem. --- Graph Master Picture Theorem. --- Graph Master Theorem. --- Graph Reconstruction Lemma. --- Grid Geometry Lemma. --- Grid Supply Lemma. --- Horizontal Lemma. --- Intertwining Lemma. --- Master Picture Theorem. --- Matching Criterion. --- Orbit Equivalence Theorem. --- PET. --- Plaid Master Picture Theorem. --- Projection Theorem. --- Quasi-Isomorphism Theorem. --- Rectangle Lemma. --- Renormalization Theorem. --- Segment Lemma. --- Truchet Comparison Theorem. --- Truchet tile system. --- Vertical Lemma. --- anchor point. --- arithmetic alignment. --- arithmetic graph. --- auxiliary lemmas. --- capacities. --- capacity sequence. --- capacity. --- checkerboard partition. --- classifying map. --- compactification. --- congruence. --- continued fractions. --- convex polygon. --- convex polytopes. --- corner percolation. --- east edges. --- elementary number theory. --- embedded loops. --- equidistribution. --- even rational parameter. --- fundamental surface. --- geometric alignment. --- geometry. --- graph grid. --- grid lines. --- horizontal case. --- integer square. --- intersection points. --- kites. --- kits. --- lemma. --- lemmas. --- light point. --- light points. --- linear algebra. --- low capacity lines. --- map. --- maps. --- mass sequence. --- masses. --- number theory. --- orbit. --- oriented lines. --- outer billiards map. --- outer billiards. --- parallel lines. --- parallelotope. --- particle lines. --- pixelated spacetime diagrams. --- pixelated spacetime. --- pixilation. --- plaid PET map. --- plaid model. --- plaid polygon. --- plaid polygons. --- plane. --- planetary motion. --- planetary orbits. --- polygon. --- polytope exchange transformations. --- polytopes. --- prism structure. --- prism. --- proof. --- quarter turn compositions. --- remote adjacency. --- renormalization. --- scale information. --- sequences. --- slanting lines. --- spaces. --- spacetime diagrams. --- spacetime plaid surfaces. --- special billiards orbits. --- square tiling. --- stacking blocks. --- structural result. --- symmetries. --- symmetry. --- technical lemma. --- theorems. --- vertical case. --- vertical particles.
Choose an application
This volume gives a clear introductory account of equivariant cohomology, a central topic in algebraic topology. Assuming readers have taken one semester of manifold theory and a year of algebraic topology, Loring Tu begins with the topological construction of equivariant cohomology, then develops the theory for smooth manifolds with the aid of differential forms. To keep the exposition simple, the equivariant localisation theorem is proven only for a circle action. An appendix gives a proof of the equivariant de Rham theorem, demonstrating that equivariant cohomology can be computed using equivariant differential forms. Examples and calculations illustrate new concepts. Exercises include hints or solutions, making this book suitable for self-study.
Cohomology operations. --- Operations (Algebraic topology) --- Algebraic topology --- Algebraic structure. --- Algebraic topology (object). --- Algebraic topology. --- Algebraic variety. --- Basis (linear algebra). --- Boundary (topology). --- CW complex. --- Cellular approximation theorem. --- Characteristic class. --- Classifying space. --- Coefficient. --- Cohomology ring. --- Cohomology. --- Comparison theorem. --- Complex projective space. --- Continuous function. --- Contractible space. --- Cramer's rule. --- Curvature form. --- De Rham cohomology. --- Diagram (category theory). --- Diffeomorphism. --- Differentiable manifold. --- Differential form. --- Differential geometry. --- Dual basis. --- Equivariant K-theory. --- Equivariant cohomology. --- Equivariant map. --- Euler characteristic. --- Euler class. --- Exponential function. --- Exponential map (Lie theory). --- Exponentiation. --- Exterior algebra. --- Exterior derivative. --- Fiber bundle. --- Fixed point (mathematics). --- Frame bundle. --- Fundamental group. --- Fundamental vector field. --- Group action. --- Group homomorphism. --- Group theory. --- Haar measure. --- Homotopy group. --- Homotopy. --- Hopf fibration. --- Identity element. --- Inclusion map. --- Integral curve. --- Invariant subspace. --- K-theory. --- Lie algebra. --- Lie derivative. --- Lie group action. --- Lie group. --- Lie theory. --- Linear algebra. --- Linear function. --- Local diffeomorphism. --- Manifold. --- Mathematics. --- Matrix group. --- Mayer–Vietoris sequence. --- Module (mathematics). --- Morphism. --- Neighbourhood (mathematics). --- Orthogonal group. --- Oscillatory integral. --- Principal bundle. --- Principal ideal domain. --- Quotient group. --- Quotient space (topology). --- Raoul Bott. --- Representation theory. --- Ring (mathematics). --- Singular homology. --- Spectral sequence. --- Stationary phase approximation. --- Structure constants. --- Sub"ient. --- Subcategory. --- Subgroup. --- Submanifold. --- Submersion (mathematics). --- Symplectic manifold. --- Symplectic vector space. --- Tangent bundle. --- Tangent space. --- Theorem. --- Topological group. --- Topological space. --- Topology. --- Unit sphere. --- Unitary group. --- Universal bundle. --- Vector bundle. --- Vector space. --- Weyl group.
Choose an application
A collection of 18 scientific papers written in honor of Professor Karlheinz Schwarz's 80th birthday. The main topics include spectroscopy, excited states, DFT developments, results analysis, solid states, and surfaces.
Research & information: general --- Chemistry --- Physical chemistry --- density functional theory --- Coulomb systems --- excited states --- nodal variational principle --- DFT --- anatase TiO2(101) surface --- adsorption energy --- Bader charge --- helium atom --- screened Coulomb potential --- variational Monte Carlo method --- Lagrange mesh method --- comparison theorem --- TD-DFT --- MC-PDFT --- Lie–Clementi --- Colle–Salvetti --- OLEDs --- subphthalocyanines --- UV–visible spectra --- axial substituents --- peripheral substituents --- time-dependent DFT --- hexatetra-carbon --- electrical properties --- molecular aggregates --- singlet excitons --- triplet excitons --- TDDFT --- charge-transfer states --- charge-resonance states --- Frenkel states --- localized excitations --- diabatic states --- adiabatic states --- semiconductors --- oscillator strength --- hybrid exchange-correlation functional --- non-local potential --- statistics --- methods comparison --- benchmarking --- band gaps --- atomization energy --- DFT codes --- electronic structure calculation --- numerical accuracy and precision --- kinetic functional --- Yukawa potential --- periodic DFTB --- deMonNano --- graphene --- graphite --- benzene dimers --- deposited benzene --- supported clusters --- weighted mulliken charges --- LAPW method --- APW+lo method --- all-electron DFT --- density matrix functional embedding --- density-functional theory --- householder transformation --- He atomic basis sets --- helium dimer --- He2 potential well --- correlation energy --- complete basis set --- sigma basis set --- atomic multiplet theory --- crystal/ligand-field theory --- coordination compounds --- electronic structure --- Cu2OCl2 --- Cu2OBr2 --- Cu2OI2 --- oxyhalides --- magnetic couplings --- Néel temperature --- chemical pressure --- NMR --- machine learning --- zeolites --- n/a --- Lie-Clementi --- Colle-Salvetti --- UV-visible spectra --- Néel temperature
Choose an application
The study of oscillatory phenomena is an important part of the theory of differential equations. Oscillations naturally occur in virtually every area of applied science including, e.g., mechanics, electrical, radio engineering, and vibrotechnics. This Special Issue includes 19 high-quality papers with original research results in theoretical research, and recent progress in the study of applied problems in science and technology. This Special Issue brought together mathematicians with physicists, engineers, as well as other scientists. Topics covered in this issue: Oscillation theory; Differential/difference equations; Partial differential equations; Dynamical systems; Fractional calculus; Delays; Mathematical modeling and oscillations.
odd-order differential equations --- Kneser solutions --- oscillatory solutions --- deviating argument --- fourth order --- differential equation --- oscillation --- advanced differential equations --- p-Laplacian equations --- comparison theorem --- oscillation criteria --- thrid-order --- delay differential equations --- oscillations --- Riccati transformations --- fourth-order delay equations --- differential operator --- unit disk --- univalent function --- analytic function --- subordination --- q-calculus --- fractional calculus --- fractional differential equation --- q-differential equation --- second order --- neutral differential equation --- (1/G′)-expansion method --- the Zhiber-Shabat equation --- (G′/G,1/G)-expansion method --- traveling wave solutions --- exact solutions --- Adomian decomposition method --- Caputo operator --- Natural transform --- Fornberg–Whitham equations --- generalized proportional fractional operator --- nonoscillatory behavior --- damping and forcing terms --- Volterra integral equations --- operational matrix of integration --- multi-wavelets --- time scales --- functional dynamic equations --- highly oscillatory integral --- Chebyshev polynomial --- nearly singular --- Levin quadrature rule --- adaptive mesh refinement --- la Cierva’s autogiro --- la Cierva’s equation --- stability --- differential equation with periodic coefficients --- interpolating scaling functions --- hyperbolic equation --- Galerkin method --- higher-order --- neutral delay --- center of mass --- conformal metric --- geodesic --- hyperbolic lever law --- non-canonical differential equations --- second-order --- mixed type
Listing 1 - 10 of 15 | << page >> |
Sort by
|