Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2021 (3)

2019 (2)

Listing 1 - 5 of 5
Sort by

Book
Entropy in Dynamic Systems
Authors: ---
ISBN: 3039216171 3039216163 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In order to measure and quantify the complex behavior of real-world systems, either novel mathematical approaches or modifications of classical ones are required to precisely predict, monitor, and control complicated chaotic and stochastic processes. Though the term of entropy comes from Greek and emphasizes its analogy to energy, today, it has wandered to different branches of pure and applied sciences and is understood in a rather rough way, with emphasis placed on the transition from regular to chaotic states, stochastic and deterministic disorder, and uniform and non-uniform distribution or decay of diversity. This collection of papers addresses the notion of entropy in a very broad sense. The presented manuscripts follow from different branches of mathematical/physical sciences, natural/social sciences, and engineering-oriented sciences with emphasis placed on the complexity of dynamical systems. Topics like timing chaos and spatiotemporal chaos, bifurcation, synchronization and anti-synchronization, stability, lumped mass and continuous mechanical systems modeling, novel nonlinear phenomena, and resonances are discussed.


Book
Stochastic Models for Geodesy and Geoinformation Science
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In geodesy and geoinformation science, as well as in many other technical disciplines, it is often not possible to directly determine the desired target quantities. Therefore, the unknown parameters must be linked with the measured values by a mathematical model which consists of the functional and the stochastic models. The functional model describes the geometrical–physical relationship between the measurements and the unknown parameters. This relationship is sufficiently well known for most applications. With regard to the stochastic model, two problem domains of fundamental importance arise: 1. How can stochastic models be set up as realistically as possible for the various geodetic observation methods and sensor systems? 2. How can the stochastic information be adequately considered in appropriate least squares adjustment models? Further questions include the interpretation of the stochastic properties of the computed target values with regard to precision and reliability and the use of the results for the detection of outliers in the input data (measurements). In this Special Issue, current research results on these general questions are presented in ten peer-reviewed articles. The basic findings can be applied to all technical scientific fields where measurements are used for the determination of parameters to describe geometric or physical phenomena.


Book
Stochastic Models for Geodesy and Geoinformation Science
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In geodesy and geoinformation science, as well as in many other technical disciplines, it is often not possible to directly determine the desired target quantities. Therefore, the unknown parameters must be linked with the measured values by a mathematical model which consists of the functional and the stochastic models. The functional model describes the geometrical–physical relationship between the measurements and the unknown parameters. This relationship is sufficiently well known for most applications. With regard to the stochastic model, two problem domains of fundamental importance arise: 1. How can stochastic models be set up as realistically as possible for the various geodetic observation methods and sensor systems? 2. How can the stochastic information be adequately considered in appropriate least squares adjustment models? Further questions include the interpretation of the stochastic properties of the computed target values with regard to precision and reliability and the use of the results for the detection of outliers in the input data (measurements). In this Special Issue, current research results on these general questions are presented in ten peer-reviewed articles. The basic findings can be applied to all technical scientific fields where measurements are used for the determination of parameters to describe geometric or physical phenomena.


Book
Stochastic Models for Geodesy and Geoinformation Science
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In geodesy and geoinformation science, as well as in many other technical disciplines, it is often not possible to directly determine the desired target quantities. Therefore, the unknown parameters must be linked with the measured values by a mathematical model which consists of the functional and the stochastic models. The functional model describes the geometrical–physical relationship between the measurements and the unknown parameters. This relationship is sufficiently well known for most applications. With regard to the stochastic model, two problem domains of fundamental importance arise: 1. How can stochastic models be set up as realistically as possible for the various geodetic observation methods and sensor systems? 2. How can the stochastic information be adequately considered in appropriate least squares adjustment models? Further questions include the interpretation of the stochastic properties of the computed target values with regard to precision and reliability and the use of the results for the detection of outliers in the input data (measurements). In this Special Issue, current research results on these general questions are presented in ten peer-reviewed articles. The basic findings can be applied to all technical scientific fields where measurements are used for the determination of parameters to describe geometric or physical phenomena.

Keywords

History of engineering & technology --- EM-algorithm --- multi-GNSS --- PPP --- process noise --- observation covariance matrix --- extended Kalman filter --- machine learning --- GNSS phase bias --- sequential quasi-Monte Carlo --- variance reduction --- autoregressive processes --- ARMA-process --- colored noise --- continuous process --- covariance function --- stochastic modeling --- time series --- elementary error model --- terrestrial laser scanning --- variance-covariance matrix --- terrestrial laser scanner --- stochastic model --- B-spline approximation --- Hurst exponent --- fractional Gaussian noise --- generalized Hurst estimator --- very long baseline interferometry --- sensitivity --- internal reliability --- robustness --- CONT14 --- Errors-In-Variables Model --- Total Least-Squares --- prior information --- collocation vs. adjustment --- mean shift model --- variance inflation model --- outlierdetection --- likelihood ratio test --- Monte Carlo integration --- data snooping --- GUM analysis --- geodetic network adjustment --- stochastic properties --- random number generator --- Monte Carlo simulation --- 3D straight line fitting --- total least squares (TLS) --- weighted total least squares (WTLS) --- nonlinear least squares adjustment --- direct solution --- singular dispersion matrix --- laser scanning data --- EM-algorithm --- multi-GNSS --- PPP --- process noise --- observation covariance matrix --- extended Kalman filter --- machine learning --- GNSS phase bias --- sequential quasi-Monte Carlo --- variance reduction --- autoregressive processes --- ARMA-process --- colored noise --- continuous process --- covariance function --- stochastic modeling --- time series --- elementary error model --- terrestrial laser scanning --- variance-covariance matrix --- terrestrial laser scanner --- stochastic model --- B-spline approximation --- Hurst exponent --- fractional Gaussian noise --- generalized Hurst estimator --- very long baseline interferometry --- sensitivity --- internal reliability --- robustness --- CONT14 --- Errors-In-Variables Model --- Total Least-Squares --- prior information --- collocation vs. adjustment --- mean shift model --- variance inflation model --- outlierdetection --- likelihood ratio test --- Monte Carlo integration --- data snooping --- GUM analysis --- geodetic network adjustment --- stochastic properties --- random number generator --- Monte Carlo simulation --- 3D straight line fitting --- total least squares (TLS) --- weighted total least squares (WTLS) --- nonlinear least squares adjustment --- direct solution --- singular dispersion matrix --- laser scanning data


Book
Modelling and Analysis of Sustainability Related Issues in New Era
Author:
ISBN: 3039210254 3039210246 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The purpose of this Special Issue is to investigate topics related to sustainability issues in the new era, especially in Industry 4.0 or other new manufacturing environments. Under Industry 4.0, there have been great changes with respect to production processes, production planning and control, quality assurance, internal control, cost determination, and other management issues. Moreover, it is expected that Industry 4.0 can create positive sustainability impacts along the whole value chain. There are three pillars of sustainability, including environmental sustainability, economic sustainability, and social sustainability. This Special Issue collects 15 sustainability-related papers from various industries that use various methods or models, such as mathematical programming, activity-based costing (ABC), material flow cost accounting, fuel consumption model, artificial intelligence (AI)-based fusion model, multi-attribute decision model (MADM), and so on. These papers are related to carbon emissions, carbon tax, Industry 4.0, economic sustainability, corporate social responsibility (CSR), etc. The research objects come from China, Taiwan, Thailand, Oman, Cyprus, Germany, Austria, and Portugal. Although the research presented in this Special Issue is not exhaustive, this Special Issue provides abundant, significant research related to environmental, economic, and social sustainability. Nevertheless, there still are many research topics that require our attention to solve problems of sustainability.

Keywords

carbon reduction --- PID controller --- n/a --- time study --- VIKOR --- life cycle cost analysis (LCCA) --- Activity-Based Costing (ABC) --- LS-ARIMAXi-ECM model --- DANP (DEMATEL based ANP) --- multi-attribute decision model (MADM) --- artificial intelligence --- white noise --- OECD --- integrated mathematical programming --- Activity-Based Standard Costing (ABSC) --- qualitative-empirical study --- energy efficiency --- multi-attribute value theory (MAVT) --- e-commerce platform --- decision making trial and evaluation laboratory (DEMATEL) --- colored noise --- carbon tax policy --- material flow cost accounting --- Manufacturing Execution System (MES) --- cap & trade --- manufacturing sustainability --- sustainability --- OEE --- mathematical programming --- aluminum-alloy wheel industry --- sustainable development --- return policy --- small and medium enterprises --- decision making --- Enterprise Resource Planning (ERP) --- tire industry --- footwear industry --- carbon tax --- electrical appliances --- niche inheritance --- carbon emission --- social sustainability --- material handling systems --- small and medium-sized enterprises --- product-mix decision --- internal control --- economic growth --- active suspension --- Industry 4.0 --- corporate social responsibility --- greenhouse gas --- carbon emissions --- succession plan --- digital transformation --- corporate social responsibility (CSR) --- fuel consumption --- agent-based control architecture --- sustainability performance --- activity-based costing (ABC) --- corporate characteristics --- firm value --- industry 4.0 --- digital platforms --- ISO14051 --- theory of constraints (TOC) --- long- and short-term --- NSGAII --- CO2 emissions --- family capital --- green production --- industrial internet of things --- multi-objective optimization --- family business --- exogenous variables

Listing 1 - 5 of 5
Sort by