Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2021 (3)

2020 (3)

2019 (1)

Listing 1 - 7 of 7
Sort by

Book
Advances in Microalloyed Steels
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In response to the demanding requirements of different sectors, such as construction, transportation, energy, manufacturing, and mining, new generations of microalloyed steels are being developed and brought to market. The addition of microalloying elements, such as niobium, vanadium, titanium, boron, and/or molybdenum, has become a key tool in the steel industry to reach economically-viable grades with increasingly higher mechanical strength, toughness, good formability, and weldable products. The challenges that microalloying steel production faces can be solved with a deeper understanding of the effects that these microalloying additions and combinations of them have during the different steps of the steelmaking process.

Keywords

History of engineering & technology --- niobium microalloyed steel --- as-cast condition --- inclusion --- rare earth elements --- precipitation. --- steel --- thermomechanical processing --- microstructure characterisation --- mechanical properties --- molybdenum --- martensitic steel --- direct quenching --- microalloying --- hardenability --- toughness --- grain refinement --- Hall-Petch coefficient --- microalloy precipitates --- hydrogen embrittlement --- Ti-Mo steel --- hot deformation --- constitutive model --- microstructural evolution --- microalloyed steels --- processing --- microstructural and chemical composition --- micro-alloyed steels --- precipitations --- Zener pinning --- atomic force microscopy (AFM) --- precipitation-microstructure correlation --- EBSD --- reconstruction methods --- continuous casting --- energy absorption --- mechanical metallurgy --- niobium --- reheat process --- thermo-mechanical controlled processing --- plate rolling --- strengthening --- precipitation --- induction --- titanium --- advanced high strength steels --- HSLA steels --- precipitation strengthening --- tempering --- bainitic ferrite --- austenite-to-ferrite transformation --- hot-torsion test --- coiling simulation --- medium-carbon steel --- strength and toughness --- austenite --- abnormal grain growth --- cold-deformation --- precipitate --- niobium microalloyed steel --- as-cast condition --- inclusion --- rare earth elements --- precipitation. --- steel --- thermomechanical processing --- microstructure characterisation --- mechanical properties --- molybdenum --- martensitic steel --- direct quenching --- microalloying --- hardenability --- toughness --- grain refinement --- Hall-Petch coefficient --- microalloy precipitates --- hydrogen embrittlement --- Ti-Mo steel --- hot deformation --- constitutive model --- microstructural evolution --- microalloyed steels --- processing --- microstructural and chemical composition --- micro-alloyed steels --- precipitations --- Zener pinning --- atomic force microscopy (AFM) --- precipitation-microstructure correlation --- EBSD --- reconstruction methods --- continuous casting --- energy absorption --- mechanical metallurgy --- niobium --- reheat process --- thermo-mechanical controlled processing --- plate rolling --- strengthening --- precipitation --- induction --- titanium --- advanced high strength steels --- HSLA steels --- precipitation strengthening --- tempering --- bainitic ferrite --- austenite-to-ferrite transformation --- hot-torsion test --- coiling simulation --- medium-carbon steel --- strength and toughness --- austenite --- abnormal grain growth --- cold-deformation --- precipitate


Book
Physical Metallurgy of High Manganese Steels
Authors: ---
ISBN: 3039218573 3039218565 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue ‘Physical Metallurgy of High Manganese Steels’ addresses the highly fascinating class of manganese-alloyed steels with manganese contents well above 3 mass%. The book gathers manuscripts from internationally recognized researchers with stimulating new ideas and original results. It consists of fifteen original research papers. Seven contributions focus on steels with manganese contents above 12 mass%. These contributions cover fundamental aspects of process-microstrcuture-properties relationships with processes ranging from cold and warm rolling over deep rolling to heat treatment. Novel findings regarding the fatigue and fracture behavior, deformation mechanisms, and computer-aided design are presented. Additionally, the Special Issue also reflects the current trend of reduced Mn content (3-12 mass%) in advanced high strength steels (AHSS). Eight contributions were dedicated to these alloys, which are often referred to as 3rd generation AHSS, medium manganese steels or quenching and partitioning (Q&P/Q+P) steels. The interplay between advanced processing, mainly novel annealing variants, and microstructure evolution has been addressed using computational and experimental approaches. A deeper understanding of strain-rate sensitivity, hydrogen embrittlement, phase transformations, and the consequences for the materials’ properties has been developed. Hence, the topics included are manifold, fundamental-science oriented and, at the same time, relevant to industrial application.

Keywords

n/a --- TRIP --- microstructure --- medium-manganese steel --- dislocation density --- V alloying --- ultrafine grains --- intercritical annealing --- medium manganese steel --- fracture --- precipitations --- twinning induced plasticity --- deformation behavior --- fatigue --- austenite-reversed-transformation --- medium-manganese --- Lüders band --- medium-Mn steel --- fatigue behavior --- alloy design --- austenitic high nitrogen steel (HNS) --- high-entropy alloys --- mechanical properties --- retained austenite --- high-manganese steel --- localized deformation --- phase transformation --- austenite stability --- processing --- strain-hardening behavior --- TWIP steel --- recrystallization annealing --- damage --- strengthening --- cold rolling --- ultrafine-grained microstructure --- serrated flow --- multiscale simulation --- deformation twinning --- annealing --- high-Mn steels --- corrosion resistance --- TWIP --- quenching and partitioning --- high manganese steel --- lightweight --- residual stresses --- in-situ DIC tensile tests --- crash box --- deep rolling --- high strength steel --- plastic deformation --- MMn steel X20CrNiMnVN18-5-10 --- neutron diffraction --- phase field simulation --- dynamic strain aging --- cold deformation --- near surface properties --- P steel --- continuous annealing --- texture --- hydrogen embrittlement --- hot-stamping --- warm rolling --- strain-rate sensitivity --- austenite reversion --- D&amp --- forging --- high-manganese steels --- grain refinement --- double soaking


Book
Advances in Microalloyed Steels
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In response to the demanding requirements of different sectors, such as construction, transportation, energy, manufacturing, and mining, new generations of microalloyed steels are being developed and brought to market. The addition of microalloying elements, such as niobium, vanadium, titanium, boron, and/or molybdenum, has become a key tool in the steel industry to reach economically-viable grades with increasingly higher mechanical strength, toughness, good formability, and weldable products. The challenges that microalloying steel production faces can be solved with a deeper understanding of the effects that these microalloying additions and combinations of them have during the different steps of the steelmaking process.


Book
Advances in Low-carbon and Stainless Steels
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue of Metals was dedicated to recent advances in low-carbon and stainless steels. Although these types of steels are not new, they are still receiving considerable attention from both research and industry sectors due to their wide range of applications and their complex microstructure and behavior under different conditions. The microstructure of low-carbon and stainless steels resulting from solidification, phase transformation, and hot working is complex, which, in turn, affect their performance under different working conditions. A detailed understanding of the microstructure, properties, and performance for these steels has been the aim of steel scientists for a long time. This Issue received quality papers on different aspects of these steels including their solidification, thermomechanical processing, phase transformation, texture, etc., and their mechanical and corrosion behaviors.


Book
Advances in Low-carbon and Stainless Steels
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue of Metals was dedicated to recent advances in low-carbon and stainless steels. Although these types of steels are not new, they are still receiving considerable attention from both research and industry sectors due to their wide range of applications and their complex microstructure and behavior under different conditions. The microstructure of low-carbon and stainless steels resulting from solidification, phase transformation, and hot working is complex, which, in turn, affect their performance under different working conditions. A detailed understanding of the microstructure, properties, and performance for these steels has been the aim of steel scientists for a long time. This Issue received quality papers on different aspects of these steels including their solidification, thermomechanical processing, phase transformation, texture, etc., and their mechanical and corrosion behaviors.


Book
Advances in Microalloyed Steels
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In response to the demanding requirements of different sectors, such as construction, transportation, energy, manufacturing, and mining, new generations of microalloyed steels are being developed and brought to market. The addition of microalloying elements, such as niobium, vanadium, titanium, boron, and/or molybdenum, has become a key tool in the steel industry to reach economically-viable grades with increasingly higher mechanical strength, toughness, good formability, and weldable products. The challenges that microalloying steel production faces can be solved with a deeper understanding of the effects that these microalloying additions and combinations of them have during the different steps of the steelmaking process.


Book
Advances in Low-carbon and Stainless Steels
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue of Metals was dedicated to recent advances in low-carbon and stainless steels. Although these types of steels are not new, they are still receiving considerable attention from both research and industry sectors due to their wide range of applications and their complex microstructure and behavior under different conditions. The microstructure of low-carbon and stainless steels resulting from solidification, phase transformation, and hot working is complex, which, in turn, affect their performance under different working conditions. A detailed understanding of the microstructure, properties, and performance for these steels has been the aim of steel scientists for a long time. This Issue received quality papers on different aspects of these steels including their solidification, thermomechanical processing, phase transformation, texture, etc., and their mechanical and corrosion behaviors.

Keywords

History of engineering & technology --- pitting --- sigma phase --- 2205 --- duplex stainless steel --- austenitic stainless steel --- cold deformation --- microstructures --- mechanical properties --- austenite --- steel --- thermomechanical processing --- phase transformation --- nucleation --- ferrite --- CCT --- TTT --- incubation --- transformation start --- FAC --- LBE --- turbulent flow --- dissolution --- modelling --- low-carbon AHSS --- Q&amp --- P --- toughness --- precipitation --- martensite packet --- mechanical characterization --- martensitic transformations --- dynamic transformation --- Nb-microalloyed steel --- roughing passes --- hot forming --- multiphase steel --- quenching and partitioning --- austempering --- Gleeble simulation --- press hardening --- martensite --- quenching --- partitioning --- dilatometry --- EBSD-IQ --- fast heating rate --- formation of austenite --- initial microstructure --- PAGS --- transformation behavior --- tensile properties --- metastability --- LCF --- HCF --- VHCF --- ambient and elevated temperatures --- carbon steel --- rotationally accelerated shot peening --- nanocrystalline --- corrosion resistance --- transformation kinetics --- local equilibrium --- para equilibrium --- Cr-rich precipitate --- interphase boundary --- type 430 stainless steel --- HSLA steel --- alloy design --- grain refinement of austenite --- Zener pinning force --- recrystallization --- Niobium Nb --- pitting --- sigma phase --- 2205 --- duplex stainless steel --- austenitic stainless steel --- cold deformation --- microstructures --- mechanical properties --- austenite --- steel --- thermomechanical processing --- phase transformation --- nucleation --- ferrite --- CCT --- TTT --- incubation --- transformation start --- FAC --- LBE --- turbulent flow --- dissolution --- modelling --- low-carbon AHSS --- Q&amp --- P --- toughness --- precipitation --- martensite packet --- mechanical characterization --- martensitic transformations --- dynamic transformation --- Nb-microalloyed steel --- roughing passes --- hot forming --- multiphase steel --- quenching and partitioning --- austempering --- Gleeble simulation --- press hardening --- martensite --- quenching --- partitioning --- dilatometry --- EBSD-IQ --- fast heating rate --- formation of austenite --- initial microstructure --- PAGS --- transformation behavior --- tensile properties --- metastability --- LCF --- HCF --- VHCF --- ambient and elevated temperatures --- carbon steel --- rotationally accelerated shot peening --- nanocrystalline --- corrosion resistance --- transformation kinetics --- local equilibrium --- para equilibrium --- Cr-rich precipitate --- interphase boundary --- type 430 stainless steel --- HSLA steel --- alloy design --- grain refinement of austenite --- Zener pinning force --- recrystallization --- Niobium Nb

Listing 1 - 7 of 7
Sort by