Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2022 (2)

2020 (3)

Listing 1 - 5 of 5
Sort by

Book
Rheology and Processing of Polymers
Authors: ---
ISBN: 3036552642 3036552634 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book covers the latest developments in the field of rheology and polymer processing, highlighting cutting-edge research focusing on the processing of advanced polymers and their composites. It demonstrates that the field of rheology and polymer processing is still gaining increased attention. Presented within are cutting-edge research results and the latest developments in the field of polymer science and engineering, innovations in the processing and characterization of biopolymers and polymer-based products, polymer physics, composites, modeling and simulations, and rheology.

Keywords

Technology: general issues --- Chemical engineering --- polypropylene --- foam-extrusion --- morphology --- foaming --- crystallization kinetics --- side chain liquid crystal polymer --- magnesium hydroxide --- low density polyethylene --- toughness --- processability --- thermoplastic vulcanizates --- compression set --- carbon fiber reinforced polycarbonate composites --- hydrothermal aging --- solid particle erosion --- mechanical property --- micro-/nano-layer coextrusion --- multilayer films --- multiscale structure --- dielectric properties --- thermoforming --- PMSQ–HDPE --- viscoelastic --- experimental --- bubble inflation test --- DMA --- Christensen’s model --- FEM --- biopolymer --- Solanyl®, wood flour --- Lignocel®, lignocellulosic particles --- fuller method --- mechanical properties --- rheological characterization --- viscoelastic spinning --- draw resonance --- kinematic waves --- extensional deformation --- stability indicator --- Giesekus fluid --- polycaprolactone --- nano-hydroxylapatite --- 3D printing --- solution extrusion --- process optimization --- drug release --- recycling --- eco-design --- coextrusion --- multilayers --- micro-/nanolayered polymers --- interfacial phenomena --- multilayer coextrusion --- reactive melt processing --- water-assisted --- radical crosslinking --- peroxide initiators --- biopolymers --- poly(ε-caprolactone) --- rheology --- molecular architecture --- long-chain branching --- polybutylene succinate --- biodegradable --- size-exclusion chromatography --- shear rheology --- extensional rheology --- Cox-Merz rule --- high-viscosity HDPE materials --- extrusion --- modelling and simulation --- spray process --- FEP coating --- scratch behavior --- friction and wear resistance --- circular economy --- n/a --- PMSQ-HDPE --- Christensen's model


Book
Functional Biodegradable Nanocomposites
Authors: --- ---
ISBN: 3036556982 3036556974 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Concern around environmental issues facing society has grown significantly in recent years. Reduction in damages resulting from both industrial and domestic waste has become a key topic as a means to address environmental problems and the exhaustion of natural resources. Likewise, the use of materials of polymeric origin in applications such as tissue regeneration, controlled release of medicines, packaging, soil remediation, etc., makes the development of materials biodegradable in biological media increasingly important. Recently, significant progress has been achieved in the creation of biodegradable polymeric formulations with functionalities similar to those of non-biodegradable polymers, both of natural and of synthetic origin, extending their applicability to fields such as food packaging, electronics, production of health-related materials, agriculture, etc. In this context, biodegradable nanocomposites offer new and exciting possibilities. This book deals with the development of functional polymer nanocomposites that can undergo biodegradation in different media, including biological systems, soils, landfills, etc. Original and review articles covering aspects of polymer science and technology, such as synthesis, processing, characterization, properties, and applications of functional biodegradable nanocomposites for different applications, are included in this book.


Book
Functional Coatings for Food Packaging Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The food packaging industry is experiencing one of the most relevant revolutions associated with the transition from fossil-based polymers to new materials of renewable origin. However, high production costs, low performance, and ethical issues still hinder the market penetration of bioplastics. Recently, coating technology was proposed as an additional strategy for achieving a more rational use of the materials used within the food packaging sector. According to the packaging optimization concept, the use of multifunctional thin layers would enable the replacement of multi-layer and heavy structures, thus reducing the upstream amount of packaging materials while maintaining (or even improving) the functional properties of the final package to pursue the goal of overall shelf life extension. Concurrently, the increasing requirements among consumers for convenience, smaller package sizes, and for minimally processed, fresh, and healthy foods have necessitated the design of highly sophisticated and engineered coatings. To this end, new chemical pathways, new raw materials (e.g., biopolymers), and non-conventional deposition technologies have been used. Nanotechnology, in particular, paved the way for the development of new architectures and never-before-seen patterns that eventually yielded nanostructured and nanocomposite coatings with outstanding performance. This book covers the most recent advances in the coating technology applied to the food packaging sector, with special emphasis on active coatings and barrier coatings intended for the shelf life extension of perishable foods.

Keywords

Research & information: general --- active food packaging --- antimicrobial --- antioxidant --- biocatalytic --- surface modification --- pectin --- edible films --- biopolymer coatings --- fruits --- vegetables --- agricultural wastes --- revalorisation --- fresh-cut --- conditioning liquid --- coatings --- spoiling microorganisms --- probiotics --- Citrus spp. --- postharvest --- disease control --- fruit quality --- fungicide alternatives --- edible coatings --- chitosan --- antifungal ingredients --- gas barrier --- coating --- thin film --- PET bottle --- DLC --- SiOx --- SiOC --- isotactic polypropylene --- zinc oxide --- properties --- active packaging --- composites --- carvacrol --- coextrusion --- lysozyme --- lactoferrin --- salmon --- food coatings --- food preservation --- biopolymers --- antioxidant and antimicrobial agents --- burrata cheese --- shelf life --- antimicrobial coating --- packaging design --- bilayer films --- strawberry --- packaging --- chitosan hydrochloride --- edible film --- food safety --- antimicrobial properties --- Botrytis cinerea --- Pectobacterium carotovorum subsp. carotovorum --- rotting --- cellulose nanocrystals (CNC) --- starch nanoparticles (SNP) --- barrier films --- nanomaterials --- nanocomposites --- bio-coatings --- oxygen barrier --- water vapor barrier --- paper --- surface --- Raman --- microscopy --- mapping --- barrier coating --- paper-based food packaging material --- alginate --- water vapor transmission rate --- MOSH/MOAH migration --- permeation --- grease barrier --- water absorptiveness --- HPLC-GC coupled with a flame ionization detector (FID) --- structural changes --- egg preservation --- Carica papaya L. --- starch --- image analysis --- porphyrin --- chlorophyllin --- active coating --- photoactivation --- self-sanitizing --- bologna --- electrospinning --- electrospraying --- superhydrophobicity --- polyethylene terephthalate (PET) --- polylactide (PLA) --- active films --- thermogravimetric analysis --- UV protection --- X-ray diffraction --- PET --- lamination --- nanoindentation --- interface --- edible coating --- hairy fig fruits --- navel oranges --- physicochemical responses --- active food packaging --- antimicrobial --- antioxidant --- biocatalytic --- surface modification --- pectin --- edible films --- biopolymer coatings --- fruits --- vegetables --- agricultural wastes --- revalorisation --- fresh-cut --- conditioning liquid --- coatings --- spoiling microorganisms --- probiotics --- Citrus spp. --- postharvest --- disease control --- fruit quality --- fungicide alternatives --- edible coatings --- chitosan --- antifungal ingredients --- gas barrier --- coating --- thin film --- PET bottle --- DLC --- SiOx --- SiOC --- isotactic polypropylene --- zinc oxide --- properties --- active packaging --- composites --- carvacrol --- coextrusion --- lysozyme --- lactoferrin --- salmon --- food coatings --- food preservation --- biopolymers --- antioxidant and antimicrobial agents --- burrata cheese --- shelf life --- antimicrobial coating --- packaging design --- bilayer films --- strawberry --- packaging --- chitosan hydrochloride --- edible film --- food safety --- antimicrobial properties --- Botrytis cinerea --- Pectobacterium carotovorum subsp. carotovorum --- rotting --- cellulose nanocrystals (CNC) --- starch nanoparticles (SNP) --- barrier films --- nanomaterials --- nanocomposites --- bio-coatings --- oxygen barrier --- water vapor barrier --- paper --- surface --- Raman --- microscopy --- mapping --- barrier coating --- paper-based food packaging material --- alginate --- water vapor transmission rate --- MOSH/MOAH migration --- permeation --- grease barrier --- water absorptiveness --- HPLC-GC coupled with a flame ionization detector (FID) --- structural changes --- egg preservation --- Carica papaya L. --- starch --- image analysis --- porphyrin --- chlorophyllin --- active coating --- photoactivation --- self-sanitizing --- bologna --- electrospinning --- electrospraying --- superhydrophobicity --- polyethylene terephthalate (PET) --- polylactide (PLA) --- active films --- thermogravimetric analysis --- UV protection --- X-ray diffraction --- PET --- lamination --- nanoindentation --- interface --- edible coating --- hairy fig fruits --- navel oranges --- physicochemical responses


Book
Functional Coatings for Food Packaging Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The food packaging industry is experiencing one of the most relevant revolutions associated with the transition from fossil-based polymers to new materials of renewable origin. However, high production costs, low performance, and ethical issues still hinder the market penetration of bioplastics. Recently, coating technology was proposed as an additional strategy for achieving a more rational use of the materials used within the food packaging sector. According to the packaging optimization concept, the use of multifunctional thin layers would enable the replacement of multi-layer and heavy structures, thus reducing the upstream amount of packaging materials while maintaining (or even improving) the functional properties of the final package to pursue the goal of overall shelf life extension. Concurrently, the increasing requirements among consumers for convenience, smaller package sizes, and for minimally processed, fresh, and healthy foods have necessitated the design of highly sophisticated and engineered coatings. To this end, new chemical pathways, new raw materials (e.g., biopolymers), and non-conventional deposition technologies have been used. Nanotechnology, in particular, paved the way for the development of new architectures and never-before-seen patterns that eventually yielded nanostructured and nanocomposite coatings with outstanding performance. This book covers the most recent advances in the coating technology applied to the food packaging sector, with special emphasis on active coatings and barrier coatings intended for the shelf life extension of perishable foods.

Keywords

Research & information: general --- active food packaging --- antimicrobial --- antioxidant --- biocatalytic --- surface modification --- pectin --- edible films --- biopolymer coatings --- fruits --- vegetables --- agricultural wastes --- revalorisation --- fresh-cut --- conditioning liquid --- coatings --- spoiling microorganisms --- probiotics --- Citrus spp. --- postharvest --- disease control --- fruit quality --- fungicide alternatives --- edible coatings --- chitosan --- antifungal ingredients --- gas barrier --- coating --- thin film --- PET bottle --- DLC --- SiOx --- SiOC --- isotactic polypropylene --- zinc oxide --- properties --- active packaging --- composites --- carvacrol --- coextrusion --- lysozyme --- lactoferrin --- salmon --- n/a --- food coatings --- food preservation --- biopolymers --- antioxidant and antimicrobial agents --- burrata cheese --- shelf life --- antimicrobial coating --- packaging design --- bilayer films --- strawberry --- packaging --- chitosan hydrochloride --- edible film --- food safety --- antimicrobial properties --- Botrytis cinerea --- Pectobacterium carotovorum subsp. carotovorum --- rotting --- cellulose nanocrystals (CNC) --- starch nanoparticles (SNP) --- barrier films --- nanomaterials --- nanocomposites --- bio-coatings --- oxygen barrier --- water vapor barrier --- paper --- surface --- Raman --- microscopy --- mapping --- barrier coating --- paper-based food packaging material --- alginate --- water vapor transmission rate --- MOSH/MOAH migration --- permeation --- grease barrier --- water absorptiveness --- HPLC–GC coupled with a flame ionization detector (FID) --- structural changes --- egg preservation --- Carica papaya L. --- starch --- image analysis --- porphyrin --- chlorophyllin --- active coating --- photoactivation --- self-sanitizing --- bologna --- electrospinning --- electrospraying --- superhydrophobicity --- polyethylene terephthalate (PET) --- polylactide (PLA) --- active films --- thermogravimetric analysis --- UV protection --- X-ray diffraction --- PET --- lamination --- nanoindentation --- interface --- edible coating --- hairy fig fruits --- navel oranges --- physicochemical responses --- HPLC-GC coupled with a flame ionization detector (FID)


Book
Functional Coatings for Food Packaging Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The food packaging industry is experiencing one of the most relevant revolutions associated with the transition from fossil-based polymers to new materials of renewable origin. However, high production costs, low performance, and ethical issues still hinder the market penetration of bioplastics. Recently, coating technology was proposed as an additional strategy for achieving a more rational use of the materials used within the food packaging sector. According to the packaging optimization concept, the use of multifunctional thin layers would enable the replacement of multi-layer and heavy structures, thus reducing the upstream amount of packaging materials while maintaining (or even improving) the functional properties of the final package to pursue the goal of overall shelf life extension. Concurrently, the increasing requirements among consumers for convenience, smaller package sizes, and for minimally processed, fresh, and healthy foods have necessitated the design of highly sophisticated and engineered coatings. To this end, new chemical pathways, new raw materials (e.g., biopolymers), and non-conventional deposition technologies have been used. Nanotechnology, in particular, paved the way for the development of new architectures and never-before-seen patterns that eventually yielded nanostructured and nanocomposite coatings with outstanding performance. This book covers the most recent advances in the coating technology applied to the food packaging sector, with special emphasis on active coatings and barrier coatings intended for the shelf life extension of perishable foods.

Keywords

active food packaging --- antimicrobial --- antioxidant --- biocatalytic --- surface modification --- pectin --- edible films --- biopolymer coatings --- fruits --- vegetables --- agricultural wastes --- revalorisation --- fresh-cut --- conditioning liquid --- coatings --- spoiling microorganisms --- probiotics --- Citrus spp. --- postharvest --- disease control --- fruit quality --- fungicide alternatives --- edible coatings --- chitosan --- antifungal ingredients --- gas barrier --- coating --- thin film --- PET bottle --- DLC --- SiOx --- SiOC --- isotactic polypropylene --- zinc oxide --- properties --- active packaging --- composites --- carvacrol --- coextrusion --- lysozyme --- lactoferrin --- salmon --- n/a --- food coatings --- food preservation --- biopolymers --- antioxidant and antimicrobial agents --- burrata cheese --- shelf life --- antimicrobial coating --- packaging design --- bilayer films --- strawberry --- packaging --- chitosan hydrochloride --- edible film --- food safety --- antimicrobial properties --- Botrytis cinerea --- Pectobacterium carotovorum subsp. carotovorum --- rotting --- cellulose nanocrystals (CNC) --- starch nanoparticles (SNP) --- barrier films --- nanomaterials --- nanocomposites --- bio-coatings --- oxygen barrier --- water vapor barrier --- paper --- surface --- Raman --- microscopy --- mapping --- barrier coating --- paper-based food packaging material --- alginate --- water vapor transmission rate --- MOSH/MOAH migration --- permeation --- grease barrier --- water absorptiveness --- HPLC–GC coupled with a flame ionization detector (FID) --- structural changes --- egg preservation --- Carica papaya L. --- starch --- image analysis --- porphyrin --- chlorophyllin --- active coating --- photoactivation --- self-sanitizing --- bologna --- electrospinning --- electrospraying --- superhydrophobicity --- polyethylene terephthalate (PET) --- polylactide (PLA) --- active films --- thermogravimetric analysis --- UV protection --- X-ray diffraction --- PET --- lamination --- nanoindentation --- interface --- edible coating --- hairy fig fruits --- navel oranges --- physicochemical responses --- HPLC-GC coupled with a flame ionization detector (FID)

Listing 1 - 5 of 5
Sort by