Narrow your search

Library

FARO (6)

KU Leuven (6)

LUCA School of Arts (6)

Odisee (6)

Thomas More Kempen (6)

Thomas More Mechelen (6)

UCLL (6)

ULB (6)

ULiège (6)

VIVES (6)

More...

Resource type

book (14)


Language

English (14)


Year
From To Submit

2022 (3)

2021 (3)

2020 (6)

2019 (2)

Listing 1 - 10 of 14 << page
of 2
>>
Sort by

Book
Characterization of Nanomaterials: Selected Papers from 6th Dresden Nanoanalysis Symposiumc
Authors: --- --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue “Characterization of Nanomaterials” collects nine selected papers presented at the 6th Dresden Nanoanalysis Symposium, held at Fraunhofer Institute for Ceramic Technologies and Systems in Dresden, Germany, on 31 August 2018. Following the specific motto of this annual symposium “Materials challenges—Micro- and nanoscale characterization”, it covered various topics of nanoscale materials characterization along the whole value and innovation chain, from fundamental research up to industrial applications. The scope of this Special Issue is to provide an overview of the current status, recent developments and research activities in the field of nanoscale materials characterization, with a particular emphasis on future scenarios. Primarily, analytical techniques for the characterization of thin films and nanostructures are discussed, including modeling and simulation. We anticipate that this Special Issue will be accessible to a wide audience, as it explores not only methodical aspects of nanoscale materials characterization, but also materials synthesis, fabrication of devices and applications.


Book
Characterization of Nanomaterials: Selected Papers from 6th Dresden Nanoanalysis Symposiumc
Authors: --- --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue “Characterization of Nanomaterials” collects nine selected papers presented at the 6th Dresden Nanoanalysis Symposium, held at Fraunhofer Institute for Ceramic Technologies and Systems in Dresden, Germany, on 31 August 2018. Following the specific motto of this annual symposium “Materials challenges—Micro- and nanoscale characterization”, it covered various topics of nanoscale materials characterization along the whole value and innovation chain, from fundamental research up to industrial applications. The scope of this Special Issue is to provide an overview of the current status, recent developments and research activities in the field of nanoscale materials characterization, with a particular emphasis on future scenarios. Primarily, analytical techniques for the characterization of thin films and nanostructures are discussed, including modeling and simulation. We anticipate that this Special Issue will be accessible to a wide audience, as it explores not only methodical aspects of nanoscale materials characterization, but also materials synthesis, fabrication of devices and applications.


Book
Photocatalysts for Organics Degradation
Authors: --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The quality of water is not only a technological and scientific issue, but a social and economic problem, in both developed and developing countries. Besides local regulations, which differ between regions and need constant upgrades, significant scientific developments are required in both the detection and removal of water contaminants. This Issue focuses on some recent advancements in the photocatalytic removal of organic pollutants, which is one of the aspects of the problem that involves the need of advanced catalysts and implies significant advancements in the field of materials science and chemical engineering.


Book
Photocatalysts for Organics Degradation
Authors: --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The quality of water is not only a technological and scientific issue, but a social and economic problem, in both developed and developing countries. Besides local regulations, which differ between regions and need constant upgrades, significant scientific developments are required in both the detection and removal of water contaminants. This Issue focuses on some recent advancements in the photocatalytic removal of organic pollutants, which is one of the aspects of the problem that involves the need of advanced catalysts and implies significant advancements in the field of materials science and chemical engineering.


Book
Porous Materials for Environmental Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The development of porous materials has attracted the attention of the research community for years. Porosity characteristics have specific impacts on the material properties and materials that are applied in many areas, such as pollutant removal, CO2 capture, energy storage, catalytic oxidation and reduction processes, the conversion of biomass to biofuels, and drug delivery. Examples of porous materials are activated carbons, clays, and zeolites. The aim of this book is to collect the recent advances and progress regarding porous materials and their applications in the environmental area.


Book
Photocatalysts for Organics Degradation
Authors: --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The quality of water is not only a technological and scientific issue, but a social and economic problem, in both developed and developing countries. Besides local regulations, which differ between regions and need constant upgrades, significant scientific developments are required in both the detection and removal of water contaminants. This Issue focuses on some recent advancements in the photocatalytic removal of organic pollutants, which is one of the aspects of the problem that involves the need of advanced catalysts and implies significant advancements in the field of materials science and chemical engineering.


Book
Porous Materials for Environmental Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The development of porous materials has attracted the attention of the research community for years. Porosity characteristics have specific impacts on the material properties and materials that are applied in many areas, such as pollutant removal, CO2 capture, energy storage, catalytic oxidation and reduction processes, the conversion of biomass to biofuels, and drug delivery. Examples of porous materials are activated carbons, clays, and zeolites. The aim of this book is to collect the recent advances and progress regarding porous materials and their applications in the environmental area.


Book
Porous Materials for Environmental Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The development of porous materials has attracted the attention of the research community for years. Porosity characteristics have specific impacts on the material properties and materials that are applied in many areas, such as pollutant removal, CO2 capture, energy storage, catalytic oxidation and reduction processes, the conversion of biomass to biofuels, and drug delivery. Examples of porous materials are activated carbons, clays, and zeolites. The aim of this book is to collect the recent advances and progress regarding porous materials and their applications in the environmental area.

Keywords

Technology: general issues --- spherical seeds --- spherical activated carbons --- activation --- microporosity --- mechanical properties --- diatomite --- zeolite X --- hydrothermal method --- calcium ion exchange capacity --- clay minerals particles --- orientational anisotropy --- granular systems --- disk packing --- X-Ray microtomography --- mesoscale simulation --- water produced --- adsorbent materials --- composite --- AlFe-pillared clay --- CrCeOx --- chlorobenzene --- catalytic combustion --- temperature-programmed reaction --- lignite --- porous structure --- carbon dioxide --- pressure --- CuCl/AC adsorbent --- CO adsorption --- monolayer dispersion --- isosteric heat --- adsorption isotherms --- Fischer–Tropsch --- supported iron oxide --- supported cobalt oxide --- reducibility --- dispersion --- biosorption --- weed --- methylene blue dye --- natural biosorbents --- adsorption kinetics --- spherical seeds --- spherical activated carbons --- activation --- microporosity --- mechanical properties --- diatomite --- zeolite X --- hydrothermal method --- calcium ion exchange capacity --- clay minerals particles --- orientational anisotropy --- granular systems --- disk packing --- X-Ray microtomography --- mesoscale simulation --- water produced --- adsorbent materials --- composite --- AlFe-pillared clay --- CrCeOx --- chlorobenzene --- catalytic combustion --- temperature-programmed reaction --- lignite --- porous structure --- carbon dioxide --- pressure --- CuCl/AC adsorbent --- CO adsorption --- monolayer dispersion --- isosteric heat --- adsorption isotherms --- Fischer–Tropsch --- supported iron oxide --- supported cobalt oxide --- reducibility --- dispersion --- biosorption --- weed --- methylene blue dye --- natural biosorbents --- adsorption kinetics


Book
Advances in Understanding of Unit Operations in Non-ferrous Extractive Metallurgy 2021
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Unit metallurgical operations processes are usually separated into three categories: 1) hydrometallurgy (leaching, mixing, neutralization, precipitation, cementation, and crystallization); 2) pyrometallurgy (roasting and smelting); and 3) electrometallurgy (aqueous electrolysis and molten salt electrolysis). In hydrometallurgy, the aimed metal is first transferred from ores and concentrates to a solution using a selective dissolution (leaching or dry digestion) under an atmospheric pressure below 100 °C and under a high pressure (40-50 bar) and high temperature (below 270°C) in an autoclave. The purification of the obtained solution was performed using neutralization agents such as sodium hydroxide and calcium carbonate or more selective precipitation agents such as sodium carbonate and oxalic acid. The separation of metals is possible using a liquid/liquid process (solvent extraction in mixer-settler) and solid–liquid (filtration in filter-press under high pressure). Crystallization is the process by which a metallic compound is converted from a liquid into a solid crystalline state via a supersaturated solution. The final step is metal production using electrochemical methods (aqueous electrolysis for basic metals such as copper, zinc, silver, and molten salt electrolysis for rare earth elements and aluminum). Advanced processes, such as ultrasonic spray pyrolysis and microwave-assisted leaching, can be combined with reduction processes in order to produce metallic powders.

Keywords

Technology: general issues --- History of engineering & technology --- Mining technology & engineering --- zirconium --- eudialyte --- hydrometallurgy --- basic sulfate precipitation --- macroporous polymer --- goethite --- factorial design --- desorption --- tailings reprocessing --- early stage cost estimation --- magnetic separation --- leaching --- flotation --- silica --- ultrasonic spray pyrolysis --- synthesis --- acid mine drainage --- red mud --- neutralization --- immobilization --- precipitation --- nitinol --- continuous vertical cast (CVC), NiTi rod --- atomic layer deposition --- corrosion properties --- potentiodynamic test --- electrochemical impedance spectroscopy --- rare earth elements --- recycling --- NdFeB --- magnet --- non-ferrous metals --- cavitation erosion --- optical microscopy --- electron microscopy --- atomic force microscopy --- aluminium --- thin-layer electrolysis --- molten salts --- halides --- capillary cell --- electrorefining --- non-commercial copper anode --- waste solution --- high content --- Ni --- Pb --- Sn --- Sb --- passivation --- anode slime --- pentlandite --- oxidation --- reaction mechanism --- phase analysis --- silver --- copper --- nanoparticles --- antibacterial --- MnO2 --- cobalt oxide Co3O4 --- perovskite materials --- oxygen reduction in alkaline media --- electrocatalyst --- Pt catalyst --- nanocomposite --- mixed oxides --- NiAl2O4 --- ZnAl2O4 --- electrocatalysis --- nanocatalyst --- noble metal nanoparticles --- leachate --- metal ions extraction --- selectivity --- Fe removal --- electrodeposition --- conductometry --- n/a


Book
Advances in Understanding of Unit Operations in Non-ferrous Extractive Metallurgy 2021
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Unit metallurgical operations processes are usually separated into three categories: 1) hydrometallurgy (leaching, mixing, neutralization, precipitation, cementation, and crystallization); 2) pyrometallurgy (roasting and smelting); and 3) electrometallurgy (aqueous electrolysis and molten salt electrolysis). In hydrometallurgy, the aimed metal is first transferred from ores and concentrates to a solution using a selective dissolution (leaching or dry digestion) under an atmospheric pressure below 100 °C and under a high pressure (40-50 bar) and high temperature (below 270°C) in an autoclave. The purification of the obtained solution was performed using neutralization agents such as sodium hydroxide and calcium carbonate or more selective precipitation agents such as sodium carbonate and oxalic acid. The separation of metals is possible using a liquid/liquid process (solvent extraction in mixer-settler) and solid–liquid (filtration in filter-press under high pressure). Crystallization is the process by which a metallic compound is converted from a liquid into a solid crystalline state via a supersaturated solution. The final step is metal production using electrochemical methods (aqueous electrolysis for basic metals such as copper, zinc, silver, and molten salt electrolysis for rare earth elements and aluminum). Advanced processes, such as ultrasonic spray pyrolysis and microwave-assisted leaching, can be combined with reduction processes in order to produce metallic powders.

Keywords

zirconium --- eudialyte --- hydrometallurgy --- basic sulfate precipitation --- macroporous polymer --- goethite --- factorial design --- desorption --- tailings reprocessing --- early stage cost estimation --- magnetic separation --- leaching --- flotation --- silica --- ultrasonic spray pyrolysis --- synthesis --- acid mine drainage --- red mud --- neutralization --- immobilization --- precipitation --- nitinol --- continuous vertical cast (CVC), NiTi rod --- atomic layer deposition --- corrosion properties --- potentiodynamic test --- electrochemical impedance spectroscopy --- rare earth elements --- recycling --- NdFeB --- magnet --- non-ferrous metals --- cavitation erosion --- optical microscopy --- electron microscopy --- atomic force microscopy --- aluminium --- thin-layer electrolysis --- molten salts --- halides --- capillary cell --- electrorefining --- non-commercial copper anode --- waste solution --- high content --- Ni --- Pb --- Sn --- Sb --- passivation --- anode slime --- pentlandite --- oxidation --- reaction mechanism --- phase analysis --- silver --- copper --- nanoparticles --- antibacterial --- MnO2 --- cobalt oxide Co3O4 --- perovskite materials --- oxygen reduction in alkaline media --- electrocatalyst --- Pt catalyst --- nanocomposite --- mixed oxides --- NiAl2O4 --- ZnAl2O4 --- electrocatalysis --- nanocatalyst --- noble metal nanoparticles --- leachate --- metal ions extraction --- selectivity --- Fe removal --- electrodeposition --- conductometry --- n/a

Listing 1 - 10 of 14 << page
of 2
>>
Sort by