Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Monitoring of vegetation structure and functioning is critical to modeling terrestrial ecosystems and energy cycles. In particular, leaf area index (LAI) is an important structural property of vegetation used in many land surface vegetation, climate, and crop production models. Canopy structure (LAI, fCover, plant height, and biomass) and biochemical parameters (leaf pigmentation and water content) directly influence the radiative transfer process of sunlight in vegetation, determining the amount of radiation measured by passive sensors in the visible and infrared portions of the electromagnetic spectrum. Optical remote sensing (RS) methods build relationships exploiting in situ measurements and/or as outputs of physical canopy radiative transfer models. The increased availability of passive (radar and LiDAR) RS data has fostered their use in many applications for the analysis of land surface properties and processes, thanks also to their insensitivity to weather conditions and the capability to exploit rich structural and textural information. Data fusion and multi-sensor integration techniques are pressing topics to fully exploit the information conveyed by both optical and microwave bands.
artificial neural network --- downscaling --- simulation --- 3D point cloud --- European beech --- consistency --- adaptive threshold --- evaluation --- photosynthesis --- geographic information system --- P-band PolInSAR --- validation --- density-based clustering --- structure from motion (SfM) --- EPIC --- Tanzania --- signal attenuation --- trunk --- canopy closure --- REDD+ --- unmanned aerial vehicle (UAV) --- forest --- recursive feature elimination --- Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) --- aboveground biomass --- random forest --- uncertainty --- household survey --- spectral information --- forests biomass --- root biomass --- biomass --- unmanned aerial vehicle --- Brazilian Amazon --- VIIRS --- global positioning system --- LAI --- photochemical reflectance index (PRI) --- allometric scaling and resource limitation --- R690/R630 --- modelling aboveground biomass --- leaf area index --- forest degradation --- spectral analyses --- terrestrial laser scanning --- BAAPA --- leaf area index (LAI) --- stem volume estimation --- tomographic profiles --- polarization coherence tomography (PCT) --- canopy gap fraction --- automated classification --- HemiView --- remote sensing --- multisource remote sensing --- Pléiades imagery --- photogrammetric point cloud --- farm types --- terrestrial LiDAR --- altitude --- RapidEye --- forest aboveground biomass --- recovery --- southern U.S. forests --- NDVI --- machine-learning --- conifer forest --- satellite --- chlorophyll fluorescence (ChlF) --- tree heights --- phenology --- point cloud --- local maxima --- clumping index --- MODIS --- digital aerial photograph --- Mediterranean --- hemispherical sky-oriented photo --- managed temperate coniferous forests --- fixed tree window size --- drought --- GLAS --- smartphone-based method --- forest above ground biomass (AGB) --- forest inventory --- over and understory cover --- sampling design
Choose an application
Vegetation plays an essential role in the study of the environment through plant respiration and photosynthesis. Therefore, the assessment of the current vegetation status is critical to modeling terrestrial ecosystems and energy cycles. Canopy structure (LAI, fCover, plant height, biomass, leaf angle distribution) and biochemical parameters (leaf pigmentation and water content) have been employed to assess vegetation status and its dynamics at scales ranging from kilometric to decametric spatial resolutions thanks to methods based on remote sensing (RS) data.Optical RS retrieval methods are based on the radiative transfer processes of sunlight in vegetation, determining the amount of radiation that is measured by passive sensors in the visible and infrared channels. The increased availability of active RS (radar and LiDAR) data has fostered their use in many applications for the analysis of land surface properties and processes, thanks to their insensitivity to weather conditions and the ability to exploit rich structural and texture information. Optical and radar data fusion and multi-sensor integration approaches are pressing topics, which could fully exploit the information conveyed by both the optical and microwave parts of the electromagnetic spectrum.This Special Issue reprint reviews the state of the art in biophysical parameters retrieval and its usage in a wide variety of applications (e.g., ecology, carbon cycle, agriculture, forestry and food security).
Research & information: general --- hyperspectral --- spectroscopy --- equivalent water thickness --- canopy water content --- agriculture --- EnMAP --- LAI --- LCC --- FAPAR --- FVC --- CCC --- PROSAIL --- GPR --- machine learning --- active learning --- Landsat 8 --- surface reflectance --- LEDAPS --- LaSRC --- 6SV --- SREM --- NDVI --- artificial neural networks --- canopy chlorophyll content --- INFORM --- leaf area index --- SAIL --- fluorescence --- in vivo --- spectrometry --- ASD Field Spec --- lead ions --- remote sensing indices --- meteosat second generation (MSG) --- biophysical parameters (LAI --- FAPAR) --- SEVIRI --- climate data records (CDR) --- stochastic spectral mixture model (SSMM) --- Satellite Application Facility for Land Surface Analysis (LSA SAF) --- the fraction of radiation absorbed by photosynthetic components (FAPARgreen) --- triple-source --- leaf area index (LAI) --- woody area index (WAI) --- clumping index (CI) --- Moderate Resolution Imaging Spectroradiometer (MODIS) --- soil albedo --- unmanned aircraft vehicle --- multispectral sensor --- vegetation indices --- rapeseed crop --- site-specific farming --- Sentinel-2 --- forest --- vegetation radiative transfer model --- Discrete Anisotropic Radiative Transfer (DART) model --- MODIS --- fraction of photosynthetically active radiation absorbed by vegetation (FPAR) --- three-dimensional radiative transfer model (3D RTM) --- uncertainty assessment --- vertical foliage profile (VFP) --- terrestrial laser scanning (TLS) --- airborne laser scanning (ALS) --- spaceborne laser scanning (SLS) --- riparian --- invasive vegetation --- burn severity --- canopy loss --- wildfire
Choose an application
Vegetation plays an essential role in the study of the environment through plant respiration and photosynthesis. Therefore, the assessment of the current vegetation status is critical to modeling terrestrial ecosystems and energy cycles. Canopy structure (LAI, fCover, plant height, biomass, leaf angle distribution) and biochemical parameters (leaf pigmentation and water content) have been employed to assess vegetation status and its dynamics at scales ranging from kilometric to decametric spatial resolutions thanks to methods based on remote sensing (RS) data.Optical RS retrieval methods are based on the radiative transfer processes of sunlight in vegetation, determining the amount of radiation that is measured by passive sensors in the visible and infrared channels. The increased availability of active RS (radar and LiDAR) data has fostered their use in many applications for the analysis of land surface properties and processes, thanks to their insensitivity to weather conditions and the ability to exploit rich structural and texture information. Optical and radar data fusion and multi-sensor integration approaches are pressing topics, which could fully exploit the information conveyed by both the optical and microwave parts of the electromagnetic spectrum.This Special Issue reprint reviews the state of the art in biophysical parameters retrieval and its usage in a wide variety of applications (e.g., ecology, carbon cycle, agriculture, forestry and food security).
hyperspectral --- spectroscopy --- equivalent water thickness --- canopy water content --- agriculture --- EnMAP --- LAI --- LCC --- FAPAR --- FVC --- CCC --- PROSAIL --- GPR --- machine learning --- active learning --- Landsat 8 --- surface reflectance --- LEDAPS --- LaSRC --- 6SV --- SREM --- NDVI --- artificial neural networks --- canopy chlorophyll content --- INFORM --- leaf area index --- SAIL --- fluorescence --- in vivo --- spectrometry --- ASD Field Spec --- lead ions --- remote sensing indices --- meteosat second generation (MSG) --- biophysical parameters (LAI --- FAPAR) --- SEVIRI --- climate data records (CDR) --- stochastic spectral mixture model (SSMM) --- Satellite Application Facility for Land Surface Analysis (LSA SAF) --- the fraction of radiation absorbed by photosynthetic components (FAPARgreen) --- triple-source --- leaf area index (LAI) --- woody area index (WAI) --- clumping index (CI) --- Moderate Resolution Imaging Spectroradiometer (MODIS) --- soil albedo --- unmanned aircraft vehicle --- multispectral sensor --- vegetation indices --- rapeseed crop --- site-specific farming --- Sentinel-2 --- forest --- vegetation radiative transfer model --- Discrete Anisotropic Radiative Transfer (DART) model --- MODIS --- fraction of photosynthetically active radiation absorbed by vegetation (FPAR) --- three-dimensional radiative transfer model (3D RTM) --- uncertainty assessment --- vertical foliage profile (VFP) --- terrestrial laser scanning (TLS) --- airborne laser scanning (ALS) --- spaceborne laser scanning (SLS) --- riparian --- invasive vegetation --- burn severity --- canopy loss --- wildfire
Choose an application
Vegetation plays an essential role in the study of the environment through plant respiration and photosynthesis. Therefore, the assessment of the current vegetation status is critical to modeling terrestrial ecosystems and energy cycles. Canopy structure (LAI, fCover, plant height, biomass, leaf angle distribution) and biochemical parameters (leaf pigmentation and water content) have been employed to assess vegetation status and its dynamics at scales ranging from kilometric to decametric spatial resolutions thanks to methods based on remote sensing (RS) data.Optical RS retrieval methods are based on the radiative transfer processes of sunlight in vegetation, determining the amount of radiation that is measured by passive sensors in the visible and infrared channels. The increased availability of active RS (radar and LiDAR) data has fostered their use in many applications for the analysis of land surface properties and processes, thanks to their insensitivity to weather conditions and the ability to exploit rich structural and texture information. Optical and radar data fusion and multi-sensor integration approaches are pressing topics, which could fully exploit the information conveyed by both the optical and microwave parts of the electromagnetic spectrum.This Special Issue reprint reviews the state of the art in biophysical parameters retrieval and its usage in a wide variety of applications (e.g., ecology, carbon cycle, agriculture, forestry and food security).
Research & information: general --- hyperspectral --- spectroscopy --- equivalent water thickness --- canopy water content --- agriculture --- EnMAP --- LAI --- LCC --- FAPAR --- FVC --- CCC --- PROSAIL --- GPR --- machine learning --- active learning --- Landsat 8 --- surface reflectance --- LEDAPS --- LaSRC --- 6SV --- SREM --- NDVI --- artificial neural networks --- canopy chlorophyll content --- INFORM --- leaf area index --- SAIL --- fluorescence --- in vivo --- spectrometry --- ASD Field Spec --- lead ions --- remote sensing indices --- meteosat second generation (MSG) --- biophysical parameters (LAI --- FAPAR) --- SEVIRI --- climate data records (CDR) --- stochastic spectral mixture model (SSMM) --- Satellite Application Facility for Land Surface Analysis (LSA SAF) --- the fraction of radiation absorbed by photosynthetic components (FAPARgreen) --- triple-source --- leaf area index (LAI) --- woody area index (WAI) --- clumping index (CI) --- Moderate Resolution Imaging Spectroradiometer (MODIS) --- soil albedo --- unmanned aircraft vehicle --- multispectral sensor --- vegetation indices --- rapeseed crop --- site-specific farming --- Sentinel-2 --- forest --- vegetation radiative transfer model --- Discrete Anisotropic Radiative Transfer (DART) model --- MODIS --- fraction of photosynthetically active radiation absorbed by vegetation (FPAR) --- three-dimensional radiative transfer model (3D RTM) --- uncertainty assessment --- vertical foliage profile (VFP) --- terrestrial laser scanning (TLS) --- airborne laser scanning (ALS) --- spaceborne laser scanning (SLS) --- riparian --- invasive vegetation --- burn severity --- canopy loss --- wildfire
Listing 1 - 4 of 4 |
Sort by
|