Listing 1 - 4 of 4 |
Sort by
|
Choose an application
This work studies the accuracy of Linear Eddie Viscosity models on the prediction of wingtip vortex flow. The geometry selected for the study is a NACA-0012 half wing mounted at the wall, with a rounded end cap and trailing edge, inclined by 10° at its quarter chord. Computations of the flow were conducted using the open source software SU2. Two turbulence closures were investigated: the Negative Spalart-Allmaras and the Menter's Shear Stress Transport models. The flow was considered at two Reynolds numbers : Re = 4.3 x 10E6 and Re = 1.2 x 10E6. To study the models' accuracy, the initial objective of the work was to produce high-fidelity LES data using the software ARGO provided by Cenaero. However, due to the setup of the simulations and the computing time requirements, we fail to obtain LES simulations of the entire wing. Therefore, the computed flow is compared against the experimental and numerical data found in the literature. The results showed that LEVM could characterize the main vortical structures' topology and surface flow quantities. However, they fail to predict the evolution of the mean quantities on the vortex core. This divergence between the numerical simulations and the experimental results was associated with the eddie viscosity, which caused a diffusion of the mean quantities, and the models' assumptions, which cannot correctly represent the Reynold stress and strain rate tensors misalignment observed in the experimental data. Although we could not fulfill the project's initial objective, we were still able to provide indications of possible future work based on comparing the RANS results with the reference experimental and numerical data.
CFD --- Turbulence Closure Models --- RANS --- LES --- WIngtip flow --- Ingénierie, informatique & technologie > Ingénierie aérospatiale
Choose an application
This book is devoted to the teaching and learning of fluid mechanics. Fluid mechanics occupies a privileged position in the sciences; it is taught in various science departments including physics, mathematics, mechanical, chemical and civil engineering and environmental sciences, each highlighting a different aspect or interpretation of the foundation and applications of fluids. While scholarship in fluid mechanics is vast, expanding into the areas of experimental, theoretical and computational fluid mechanics, there is little discussion among scientists about the different possible ways of teaching this subject. We think there is much to be learned, for teachers and students alike, from an interdisciplinary dialogue about fluids. This volume therefore highlights articles which have bearing on the pedagogical aspects of fluid mechanics at the undergraduate and graduate level.
Technology: general issues --- fluid dynamics education --- damped pendulums --- fluid drag --- fluid-structure interaction --- computational fluid dynamics --- outcomes competences --- hydraulic engineering --- hydraulic teaching --- active methodology --- droplet impact --- undergraduate education --- applications of fluids --- vortex formation length --- wake --- vortex shedding --- practical engineering education --- fluid mechanics --- learning and teaching --- laboratories --- data assimilation --- variational and sequential methods --- Kalman filtering --- forward sensitivity --- measurements fusion --- reduced order models --- quasi-geostrophic equations --- closure models --- Navier-Stokes equations --- Leray-Hopf weak solutions --- existence --- inquiry-based instruction --- science education --- teaching-learning sequences --- didactic transformation --- primary level --- CFD --- Julia --- Blasius --- Hiemenz --- Homann --- Falkner–Skan --- boundary-layer --- open water tank --- education --- n/a --- Falkner-Skan
Choose an application
This book is devoted to the teaching and learning of fluid mechanics. Fluid mechanics occupies a privileged position in the sciences; it is taught in various science departments including physics, mathematics, mechanical, chemical and civil engineering and environmental sciences, each highlighting a different aspect or interpretation of the foundation and applications of fluids. While scholarship in fluid mechanics is vast, expanding into the areas of experimental, theoretical and computational fluid mechanics, there is little discussion among scientists about the different possible ways of teaching this subject. We think there is much to be learned, for teachers and students alike, from an interdisciplinary dialogue about fluids. This volume therefore highlights articles which have bearing on the pedagogical aspects of fluid mechanics at the undergraduate and graduate level.
fluid dynamics education --- damped pendulums --- fluid drag --- fluid-structure interaction --- computational fluid dynamics --- outcomes competences --- hydraulic engineering --- hydraulic teaching --- active methodology --- droplet impact --- undergraduate education --- applications of fluids --- vortex formation length --- wake --- vortex shedding --- practical engineering education --- fluid mechanics --- learning and teaching --- laboratories --- data assimilation --- variational and sequential methods --- Kalman filtering --- forward sensitivity --- measurements fusion --- reduced order models --- quasi-geostrophic equations --- closure models --- Navier-Stokes equations --- Leray-Hopf weak solutions --- existence --- inquiry-based instruction --- science education --- teaching-learning sequences --- didactic transformation --- primary level --- CFD --- Julia --- Blasius --- Hiemenz --- Homann --- Falkner–Skan --- boundary-layer --- open water tank --- education --- n/a --- Falkner-Skan
Choose an application
This book is devoted to the teaching and learning of fluid mechanics. Fluid mechanics occupies a privileged position in the sciences; it is taught in various science departments including physics, mathematics, mechanical, chemical and civil engineering and environmental sciences, each highlighting a different aspect or interpretation of the foundation and applications of fluids. While scholarship in fluid mechanics is vast, expanding into the areas of experimental, theoretical and computational fluid mechanics, there is little discussion among scientists about the different possible ways of teaching this subject. We think there is much to be learned, for teachers and students alike, from an interdisciplinary dialogue about fluids. This volume therefore highlights articles which have bearing on the pedagogical aspects of fluid mechanics at the undergraduate and graduate level.
Technology: general issues --- fluid dynamics education --- damped pendulums --- fluid drag --- fluid-structure interaction --- computational fluid dynamics --- outcomes competences --- hydraulic engineering --- hydraulic teaching --- active methodology --- droplet impact --- undergraduate education --- applications of fluids --- vortex formation length --- wake --- vortex shedding --- practical engineering education --- fluid mechanics --- learning and teaching --- laboratories --- data assimilation --- variational and sequential methods --- Kalman filtering --- forward sensitivity --- measurements fusion --- reduced order models --- quasi-geostrophic equations --- closure models --- Navier-Stokes equations --- Leray-Hopf weak solutions --- existence --- inquiry-based instruction --- science education --- teaching-learning sequences --- didactic transformation --- primary level --- CFD --- Julia --- Blasius --- Hiemenz --- Homann --- Falkner-Skan --- boundary-layer --- open water tank --- education
Listing 1 - 4 of 4 |
Sort by
|