Listing 1 - 2 of 2 |
Sort by
|
Choose an application
Mixed ionic-electronic conducting (MIEC) ceramics as oxygen transport membranes (OTMs) can provide high oxygen permeation rates at comparably low energy demands. For this purpose, Ba?.?Sr?.?Co?.?Fe?.?O??? (BSCF) shows the best performance under ideal operating conditions. Thermal and chemical stability investigations, electrical behavior ?(T,pO?,t), and oxygen exchange parameter extraction by means of electrical conductivity relaxation resulted in a far better understanding of the BSCF system.
electrochemical characterization --- thermische und chemische Stabilitätmixed ionic-electronic conductors --- oxygen transport membranes --- elektronische/ionische Mischleiter --- thermal and chemical stability --- Sauerstofftransportmembranen --- BSCF --- elektrochemische Charakterisierung
Choose an application
Superhydrophobic surfaces, with a water contact angle >150°, have attracted both academic and industrial interest due to their wide range of applications, such as water proofing, anti-fogging, antifouling, anti-icing, fluidic drag reduction and anti-corrosion. Currently the majority of superhydrophobic coatings are created using organic chemicals with low surface energy. However, the lack of mechanical strength and heat resistance prevents the use of these coatings in harsh environments. Quality superhydrophobic coatings developed using inorganic materials are therefore highly sought after. Ceramics are of particular interest due to their high mechanical strength, heat and corrosion resistance. Such superhydrophobic coatings have recently been successfully fabricated using a variety of ceramics and different approaches, and have shown the improved wear and tribocorrosion resistance properties. This Special Issue focuses on the recent developments in the fabrication of superhydrophobic coatings and their robustness against corrosion and wear resistance, but the original work on other properties of superhydrophobic coatings are also welcome. In particular, the topics of interest include, but are not limited to: Robust superhydrophobic coatings; Coatings with super-wettability in multifunctional applications; Wetting effects on corrosion and tribology; Hierarchical Coating for wetting and modelling.
n/a --- self-cleaning --- ferrofluid drop --- surface topography --- oil-water separation --- wear resistance --- super-hydrophobic coating --- parabolic morphology --- nanocomposite --- electrochemical surface engineering --- Al2O3-coated particles --- dynamic characteristics --- superhydrophobic --- stability --- suspension --- water-lubricated bearing --- chemical stability --- corrosion protection --- low friction --- friction and wear behaviour --- lubrication performance --- electrochemical deposition --- carbon steel --- TiO2 --- magnetic field --- superhydrophobic surface --- empirical formula of friction coefficient --- rough morphology --- electroless composite coating --- HVOF --- water-repellent surfaces --- corrosion resistance --- mechanical durability --- aluminum alloy --- Ni–Co --- WS2 --- thermal spray --- surfactant --- Co–Ni coating --- damped harmonic oscillation --- anodization --- etching --- MoS2 particles --- chemical etching --- truncated cone morphology --- superhydrophobic materials --- hydrophobicity --- super-hydrophobic surface --- micro-arc oxidation --- electrodeposition
Listing 1 - 2 of 2 |
Sort by
|