Listing 1 - 3 of 3 |
Sort by
|
Choose an application
The state-of-the-art in water-worked bed hydraulics can only be examined through a careful exploration of the experimental (both laboratory and field) results via theoretical development. This book is primarily focused on the research aspects that involve a comprehensive knowledge of sediment dynamics in turbulent flows, as the most up-to-date research findings in the field are presented. It begins with two reviews on bedload transport and water-work bed experimental studies. The sediment dynamics is then analyzed from a classical perspective by applying the mean bed shear approach and additionally incorporating a statistical description for the role of turbulence. The work finally examines the local scour problems at hydraulic structures and results from field studies. It is intended as a course guide for field professionals, keeping up with modern technological developments. Therefore, as a simple prerequisite, readers should have a basic knowledge of hydraulics to an undergraduate level.
risk assessment --- n/a --- heavy metals --- sand waves --- scour depth --- in-stream structures --- backwater effect --- friction factor --- natural sandy bed river --- morphology --- turbulent flow --- sediment --- flood --- spur dike --- water reservoir --- local bed shear stress --- gravel-bed stream --- logarithmic law of the wall --- environmental variables --- mountain stream --- experiments --- scour holes --- drag-reducing flows --- flow type --- Three Gorges Reservoir --- hysteresis --- acoustic Doppler velocimeter --- check dam --- bedload --- granular beds --- bed-load transport --- aquatic plants --- flow velocity measurements --- groyne type --- fluvial hydraulics --- groyne field --- flow resistance --- water-worked gravel bed --- Mountain River --- aquatic plant biomechanics --- von Kármán parameter ? --- bed shear stress --- river morphology --- river --- turbulent kinetic energy --- scour --- von Kármán parameter ?
Choose an application
Rapid urbanization and industrialization have progressively caused severe impacts on the mountainous, river, coastal environments, and have increased the risks for people living in these areas. Human activities have changed the ecosystems, and, hence, it is important to determine ways to predict these consequences to enable the preservation and restoration of these key areas. Furthermore, extreme events attributed to climate change are becoming more frequent, aggravating the entire scenario and introducing ulterior uncertainties for the accurate and efficient management of these areas to protect the environment, as well as the health and safety of people. Climate change is altering the rain and extreme heat, as well as inducing other weather mutations. All these lead to more frequent natural disasters such as flood events, erosions, and contamination and spreading of pollutants. Therefore, efforts need to be devoted to investigating the underlying causes, and to identifying feasible mitigation and adaptation strategies to reduce the negative impacts on both the environment and citizens. In support of this aim, the selected papers in this book covered a wide range of issues that are mainly relevant to the following: i) the numerical and experimental characterization of complex flow conditions under specific circumstances induced by the natural hazards; ii) the effect of climate change on the hydrological processes in the mountainous, river and coastal environments, iii) the protection of ecosystems and the restoration of areas damaged by the effects of the climate change and human activities.
check dam --- hydrologic response --- sediment transport --- InHM --- Loess Plateau --- stratification effect --- inertia effect --- secondary flow --- meandering --- sediment laden flows --- pier scour --- non-uniform sediment --- armor layer --- equilibrium scour depth processes --- clear water scour condition --- suffusion --- internal stability --- grain size distribution (GSD) --- ecological operation --- multi-scale --- decomposition-coordination --- hydrologic alterations --- embankments --- overtopping failure --- material point method --- water–soil interactions --- numerical simulation --- SPH (Smoothed Particle Hydrodynamics) --- water-related natural hazards --- sediment scouring --- dense granular flow --- fast landslide --- surge wave --- flooding on complex topography --- HPC (High Performance Computing) --- FOSS (Free Open Source Software) --- climate change --- water levels --- causes and implications --- Qinghai Lake, Tibetan Plateau --- rainfall patterns --- rainfall-runoff --- soil erosion --- slope length --- slope gradient --- non-homogeneous debris flow --- viscous coefficients --- intermittent debris flows --- energy conversion --- focusing waves --- wave amplitude spectra --- space-time parameter --- experimental investigations --- InVEST model --- wetland --- ecosystem service assessment --- value analysis --- schistosomiasis prevention --- ISPH --- liquid sloshing --- water jet flow --- impact pressure --- excitation frequency --- Navier-Stokes equation --- SST k-ω turbulence model --- vortex-induced vibration (VIV) --- Arbitrary Lagrangian Eulerian (ALE) method --- finite element method (FEM) --- rock–soil contact area --- fissure flow --- karst rocky desertification --- runoff --- rainfall simulation --- Smooth Particle Hydrodynamics (SPH) --- porous media --- mathematical model --- coastal structure --- ocean and engineering --- turbulence --- emergent vegetation --- flexible vegetation --- rigid vegetation --- coherent structures --- shear layer --- elastic actuator line model --- OpenFOAM --- NREL 5 MW wind turbine --- aeroelastic performance --- check dam system --- sedimentary land --- flood control --- dam break --- SWE --- SPH --- openMP --- numerical modelling --- computational time --- experimental modelling --- scouring --- smoothed-particle hydrodynamics --- flooding --- dam-break --- debris flows --- urban evolution --- natural hazard
Choose an application
Rapid urbanization and industrialization have progressively caused severe impacts on the mountainous, river, coastal environments, and have increased the risks for people living in these areas. Human activities have changed the ecosystems, and, hence, it is important to determine ways to predict these consequences to enable the preservation and restoration of these key areas. Furthermore, extreme events attributed to climate change are becoming more frequent, aggravating the entire scenario and introducing ulterior uncertainties for the accurate and efficient management of these areas to protect the environment, as well as the health and safety of people. Climate change is altering the rain and extreme heat, as well as inducing other weather mutations. All these lead to more frequent natural disasters such as flood events, erosions, and contamination and spreading of pollutants. Therefore, efforts need to be devoted to investigating the underlying causes, and to identifying feasible mitigation and adaptation strategies to reduce the negative impacts on both the environment and citizens. In support of this aim, the selected papers in this book covered a wide range of issues that are mainly relevant to the following: i) the numerical and experimental characterization of complex flow conditions under specific circumstances induced by the natural hazards; ii) the effect of climate change on the hydrological processes in the mountainous, river and coastal environments, iii) the protection of ecosystems and the restoration of areas damaged by the effects of the climate change and human activities.
Research & information: general --- check dam --- hydrologic response --- sediment transport --- InHM --- Loess Plateau --- stratification effect --- inertia effect --- secondary flow --- meandering --- sediment laden flows --- pier scour --- non-uniform sediment --- armor layer --- equilibrium scour depth processes --- clear water scour condition --- suffusion --- internal stability --- grain size distribution (GSD) --- ecological operation --- multi-scale --- decomposition-coordination --- hydrologic alterations --- embankments --- overtopping failure --- material point method --- water–soil interactions --- numerical simulation --- SPH (Smoothed Particle Hydrodynamics) --- water-related natural hazards --- sediment scouring --- dense granular flow --- fast landslide --- surge wave --- flooding on complex topography --- HPC (High Performance Computing) --- FOSS (Free Open Source Software) --- climate change --- water levels --- causes and implications --- Qinghai Lake, Tibetan Plateau --- rainfall patterns --- rainfall-runoff --- soil erosion --- slope length --- slope gradient --- non-homogeneous debris flow --- viscous coefficients --- intermittent debris flows --- energy conversion --- focusing waves --- wave amplitude spectra --- space-time parameter --- experimental investigations --- InVEST model --- wetland --- ecosystem service assessment --- value analysis --- schistosomiasis prevention --- ISPH --- liquid sloshing --- water jet flow --- impact pressure --- excitation frequency --- Navier-Stokes equation --- SST k-ω turbulence model --- vortex-induced vibration (VIV) --- Arbitrary Lagrangian Eulerian (ALE) method --- finite element method (FEM) --- rock–soil contact area --- fissure flow --- karst rocky desertification --- runoff --- rainfall simulation --- Smooth Particle Hydrodynamics (SPH) --- porous media --- mathematical model --- coastal structure --- ocean and engineering --- turbulence --- emergent vegetation --- flexible vegetation --- rigid vegetation --- coherent structures --- shear layer --- elastic actuator line model --- OpenFOAM --- NREL 5 MW wind turbine --- aeroelastic performance --- check dam system --- sedimentary land --- flood control --- dam break --- SWE --- SPH --- openMP --- numerical modelling --- computational time --- experimental modelling --- scouring --- smoothed-particle hydrodynamics --- flooding --- dam-break --- debris flows --- urban evolution --- natural hazard --- check dam --- hydrologic response --- sediment transport --- InHM --- Loess Plateau --- stratification effect --- inertia effect --- secondary flow --- meandering --- sediment laden flows --- pier scour --- non-uniform sediment --- armor layer --- equilibrium scour depth processes --- clear water scour condition --- suffusion --- internal stability --- grain size distribution (GSD) --- ecological operation --- multi-scale --- decomposition-coordination --- hydrologic alterations --- embankments --- overtopping failure --- material point method --- water–soil interactions --- numerical simulation --- SPH (Smoothed Particle Hydrodynamics) --- water-related natural hazards --- sediment scouring --- dense granular flow --- fast landslide --- surge wave --- flooding on complex topography --- HPC (High Performance Computing) --- FOSS (Free Open Source Software) --- climate change --- water levels --- causes and implications --- Qinghai Lake, Tibetan Plateau --- rainfall patterns --- rainfall-runoff --- soil erosion --- slope length --- slope gradient --- non-homogeneous debris flow --- viscous coefficients --- intermittent debris flows --- energy conversion --- focusing waves --- wave amplitude spectra --- space-time parameter --- experimental investigations --- InVEST model --- wetland --- ecosystem service assessment --- value analysis --- schistosomiasis prevention --- ISPH --- liquid sloshing --- water jet flow --- impact pressure --- excitation frequency --- Navier-Stokes equation --- SST k-ω turbulence model --- vortex-induced vibration (VIV) --- Arbitrary Lagrangian Eulerian (ALE) method --- finite element method (FEM) --- rock–soil contact area --- fissure flow --- karst rocky desertification --- runoff --- rainfall simulation --- Smooth Particle Hydrodynamics (SPH) --- porous media --- mathematical model --- coastal structure --- ocean and engineering --- turbulence --- emergent vegetation --- flexible vegetation --- rigid vegetation --- coherent structures --- shear layer --- elastic actuator line model --- OpenFOAM --- NREL 5 MW wind turbine --- aeroelastic performance --- check dam system --- sedimentary land --- flood control --- dam break --- SWE --- SPH --- openMP --- numerical modelling --- computational time --- experimental modelling --- scouring --- smoothed-particle hydrodynamics --- flooding --- dam-break --- debris flows --- urban evolution --- natural hazard
Listing 1 - 3 of 3 |
Sort by
|