Listing 1 - 10 of 13 | << page >> |
Sort by
|
Choose an application
Materials --- materiaalkunde --- materialen --- polymeren --- composieten --- keramiek --- cermet --- glas --- staal --- corrosie --- koper --- aluminium --- oppervlaktebehandeling --- poedermetallurgie --- Engineering --- Engineering materials --- Industrial materials --- Engineering design --- Manufacturing processes --- Engineering material
Choose an application
Recently, the scientific community has deemed surface modification to be necessary because the surface properties of new materials are usually inadequate in terms of wettability, adhesion, corrosion resistance, or even drag reduction. In order to modify solid surfaces such as metals and alloys, different treatments have been used to obtain a desired surface finish, including chemical vapor deposition, physical vapor deposition, chemical etching, electrodeposition, or the application of non-equilibrium gaseous media, especially gaseous plasma. These treatments promote changes in roughness, hydrophobicity, biocompatibility, or reactivity. Although such treatments have been studied extensively over the past decades and even commercialized, the exact mechanisms of the interaction between reactive gaseous species and solid materials are still inadequately understood. Moreover, for various reasons, it is difficult to find an alloy with a surface behavior that differs from that of the bulk. A frequent goal of surface modification is to obtain a greater or more specific resistance to extreme environments, including resistance to corrosion and wear; higher mechanical or fatigue resistance; hydrophobicity; oleophilicity; or thermal (for low or high temperature exposure), magnetic, electrical, or specific optic or light exposure behavior. Another objective is to increase biocompatibility, prevent (bio)fouling, or both. In order to achieve and improve these properties in metals and alloys, the strategy of surface modification must be applied on the basis of direct action on the metal or the incorporation of a coating that will provide these properties or functionalize its surface to meet complex requirements.
Research & information: general --- non-fluorinated --- superhydrophobic --- water-harvesting --- fatty acid --- robust --- durable --- fluoropolyurethane --- zinc substrate --- Cu2+-assisted etching --- superhydrophobic/hydrophilic --- drag reduction --- plasma electrolytic oxidation --- PEO --- coatings --- steel --- zinc-aluminized --- corrosion --- roughness --- incidence angle --- additive manufacturing --- L-PBF --- INCONEL718 --- thermal spray --- HVOF --- HVAF --- WC-based coatings --- cermet materials --- wear resistance --- n/a
Choose an application
Recently, the scientific community has deemed surface modification to be necessary because the surface properties of new materials are usually inadequate in terms of wettability, adhesion, corrosion resistance, or even drag reduction. In order to modify solid surfaces such as metals and alloys, different treatments have been used to obtain a desired surface finish, including chemical vapor deposition, physical vapor deposition, chemical etching, electrodeposition, or the application of non-equilibrium gaseous media, especially gaseous plasma. These treatments promote changes in roughness, hydrophobicity, biocompatibility, or reactivity. Although such treatments have been studied extensively over the past decades and even commercialized, the exact mechanisms of the interaction between reactive gaseous species and solid materials are still inadequately understood. Moreover, for various reasons, it is difficult to find an alloy with a surface behavior that differs from that of the bulk. A frequent goal of surface modification is to obtain a greater or more specific resistance to extreme environments, including resistance to corrosion and wear; higher mechanical or fatigue resistance; hydrophobicity; oleophilicity; or thermal (for low or high temperature exposure), magnetic, electrical, or specific optic or light exposure behavior. Another objective is to increase biocompatibility, prevent (bio)fouling, or both. In order to achieve and improve these properties in metals and alloys, the strategy of surface modification must be applied on the basis of direct action on the metal or the incorporation of a coating that will provide these properties or functionalize its surface to meet complex requirements.
non-fluorinated --- superhydrophobic --- water-harvesting --- fatty acid --- robust --- durable --- fluoropolyurethane --- zinc substrate --- Cu2+-assisted etching --- superhydrophobic/hydrophilic --- drag reduction --- plasma electrolytic oxidation --- PEO --- coatings --- steel --- zinc-aluminized --- corrosion --- roughness --- incidence angle --- additive manufacturing --- L-PBF --- INCONEL718 --- thermal spray --- HVOF --- HVAF --- WC-based coatings --- cermet materials --- wear resistance --- n/a
Choose an application
Recently, the scientific community has deemed surface modification to be necessary because the surface properties of new materials are usually inadequate in terms of wettability, adhesion, corrosion resistance, or even drag reduction. In order to modify solid surfaces such as metals and alloys, different treatments have been used to obtain a desired surface finish, including chemical vapor deposition, physical vapor deposition, chemical etching, electrodeposition, or the application of non-equilibrium gaseous media, especially gaseous plasma. These treatments promote changes in roughness, hydrophobicity, biocompatibility, or reactivity. Although such treatments have been studied extensively over the past decades and even commercialized, the exact mechanisms of the interaction between reactive gaseous species and solid materials are still inadequately understood. Moreover, for various reasons, it is difficult to find an alloy with a surface behavior that differs from that of the bulk. A frequent goal of surface modification is to obtain a greater or more specific resistance to extreme environments, including resistance to corrosion and wear; higher mechanical or fatigue resistance; hydrophobicity; oleophilicity; or thermal (for low or high temperature exposure), magnetic, electrical, or specific optic or light exposure behavior. Another objective is to increase biocompatibility, prevent (bio)fouling, or both. In order to achieve and improve these properties in metals and alloys, the strategy of surface modification must be applied on the basis of direct action on the metal or the incorporation of a coating that will provide these properties or functionalize its surface to meet complex requirements.
Research & information: general --- non-fluorinated --- superhydrophobic --- water-harvesting --- fatty acid --- robust --- durable --- fluoropolyurethane --- zinc substrate --- Cu2+-assisted etching --- superhydrophobic/hydrophilic --- drag reduction --- plasma electrolytic oxidation --- PEO --- coatings --- steel --- zinc-aluminized --- corrosion --- roughness --- incidence angle --- additive manufacturing --- L-PBF --- INCONEL718 --- thermal spray --- HVOF --- HVAF --- WC-based coatings --- cermet materials --- wear resistance
Choose an application
Very recently, a great deal of attention has been paid by researchers and technologists to trying to eliminate metal materials in the design of products and processes in favor of plastics and composites. After a few years, it is possible to state that metal materials are even more present in our lives and this is especially thanks to their ability to evolve. This Special Issue is focused on the recent evolution of metals and alloys with the scope of presenting the state of the art of solutions where metallic materials have become established, without a doubt, as a successful design solution thanks to their unique properties.
Technology: general issues --- material properties prediction --- experimental data analysis --- ductile/spheroidal cast iron (SGI) --- compact graphite cast iron (CGI) --- Machine Learning (RF) --- pattern recognition --- Random Forest (RF) --- Artificial Neural Network (NN) --- k-nearest neighbours (kNN) --- tribology --- wear --- slurry erosion --- coating --- cermet --- spheroidal graphite cast iron --- pack aluminizing --- microstructure --- high-temperature oxidation resistance --- hybrid composite --- wear performance --- ZA27 alloy --- deflection --- plates --- stiffeners --- numerical simulation --- Constructal Design --- austenitic stainless steel --- tensile properties --- artificial neural network --- MIV analysis --- pallet rack --- moment-rotation curve --- connection --- experiment --- numerical analysis --- thermomechanical processing --- grain growth --- forging --- retained austenite --- bainitic microstructure --- extended finite element method (xFEM) --- polarization curve --- long-term operated metals --- hybrid materials --- fatigue crack growth --- stress intensity factors (SIF) --- linear regression --- micromagnetic testing --- hardness --- case hardening depth --- phase-field modeling --- modified damage model --- large-strain plasticity --- S355J2+N steel --- ductile fracture --- two-stage yield function --- copper coatings --- pulsating current (PC) --- composite hardness models --- creep resistance --- n/a
Choose an application
This reprint gathers works on various coating materials and technologies aimed at the improvement of materials’ properties, such as corrosion resistance or biocompatibility. Systematic studies demonstrate how the structure and morphology of coatings can change the mechanical, chemical and various functional properties of materials. The reprint contributes to the better understanding of various phenomena induced by metal, ceramic or composite coatings in core materials and, thus, it can help in the more rational design of the selected material’s properties in future studies by the application of coatings.
Research & information: general --- Physics --- cold spray --- scanning electron microscope --- electrochemical workstation --- neutral salt spray test --- photocatalysis --- friction and wear --- composite coatings --- plasma electrolytic oxidation --- Al2O3 --- energy transfer --- photoluminescence --- Ce3+/Eu2+ --- sliding wear --- cold work die steel --- HVOF --- WC-CoCr --- cermet --- wet welding --- underwater welding --- abrasive wear resistance --- high-strength low-alloy steel --- hardness measurements --- metal–mineral abrasion --- ultrathin films --- infrared spectroscopy --- detection limit --- ZnS --- atomic layer deposition (ALD) --- molecular layer deposition (MLD) --- phosphoric acid --- sulfuric acid --- sulfosalicylic acid --- oxalic acid --- malonic acid --- tartaric acid --- citric acid --- 0.1 and 0.6 molar solution --- porous anodic alumina --- anodizing --- chemical vapor deposition --- nickel alloys --- aluminide coatings --- high temperature fatigue --- creep --- biocompatibility --- corrosion protection --- wear resistance --- ceramic coatings --- plasma electrolytic oxidation (PEO) coating --- microstructure --- growth mechanism --- zirconium and zirconium-based alloys --- iron anchor --- corrosion product --- iron relics --- corrosion mechanism --- n/a --- metal-mineral abrasion
Choose an application
This reprint gathers works on various coating materials and technologies aimed at the improvement of materials’ properties, such as corrosion resistance or biocompatibility. Systematic studies demonstrate how the structure and morphology of coatings can change the mechanical, chemical and various functional properties of materials. The reprint contributes to the better understanding of various phenomena induced by metal, ceramic or composite coatings in core materials and, thus, it can help in the more rational design of the selected material’s properties in future studies by the application of coatings.
cold spray --- scanning electron microscope --- electrochemical workstation --- neutral salt spray test --- photocatalysis --- friction and wear --- composite coatings --- plasma electrolytic oxidation --- Al2O3 --- energy transfer --- photoluminescence --- Ce3+/Eu2+ --- sliding wear --- cold work die steel --- HVOF --- WC-CoCr --- cermet --- wet welding --- underwater welding --- abrasive wear resistance --- high-strength low-alloy steel --- hardness measurements --- metal–mineral abrasion --- ultrathin films --- infrared spectroscopy --- detection limit --- ZnS --- atomic layer deposition (ALD) --- molecular layer deposition (MLD) --- phosphoric acid --- sulfuric acid --- sulfosalicylic acid --- oxalic acid --- malonic acid --- tartaric acid --- citric acid --- 0.1 and 0.6 molar solution --- porous anodic alumina --- anodizing --- chemical vapor deposition --- nickel alloys --- aluminide coatings --- high temperature fatigue --- creep --- biocompatibility --- corrosion protection --- wear resistance --- ceramic coatings --- plasma electrolytic oxidation (PEO) coating --- microstructure --- growth mechanism --- zirconium and zirconium-based alloys --- iron anchor --- corrosion product --- iron relics --- corrosion mechanism --- n/a --- metal-mineral abrasion
Choose an application
Corrosion is a significant issue in many industrial fields. Among other strategies, coatings are by far the most important technology for corrosion protection of metallic surfaces. The Special Issue “Advanced Coatings for Corrosion Protection” has been launched as a means to present recent developments in any type of advanced coating for corrosion protection. This book compiles 15 contributions on metallic, inorganic, polymeric and nanoparticle enhanced coatings that provide corrosion protection as well as other functionalities.
fluorine free --- silanization --- superhydrophobic --- corrosion protection --- self-cleaning --- cathodic protection --- corrosion mitigation method --- potentiodynamic polarization test --- simulation --- pre-insulated pipeline --- zinc-rich coating --- cold galvanized coating --- durability --- magnesium --- microstructure --- coating --- corrosion --- polarization --- apatite --- scanning electrodeposition --- Ni-Fe-Co-P-CeO2 composite coating --- electrochemical corrosion behavior --- corrosion mechanism --- Zn-Al diffusion layer --- mechanical energy aided diffusion --- corrosion resistance --- electrochemistry --- aluminum foam --- electrodeposition --- compression test --- polyurea --- aging mechanism --- morphology --- chemical properties --- phase separation --- hydrogen bond --- magnesium alloy --- MAO coating --- corrosion behavior --- stratification phenomena --- marine environments --- aluminum alloy AlMg6 --- Al2O3 coating --- phase composition --- stress corrosion --- micro-arc oxidation --- polymer --- water hydraulic valve --- cavitation --- erosion --- coating selection --- molecular dynamics --- boride-based cermet --- laser cladding synthesis --- laser power --- hardness --- wear resistance --- MAX phase --- Ti2AlN --- PVD coating --- oxidation --- hydrogen permeation --- tungsten --- W–Cr–C coating --- carburization --- intergranular corrosion --- pitting corrosion --- stainless steel --- passivated --- electrochemical noise --- precipitation hardening --- metallic coatings --- anodizing layers --- passivation --- polymeric coatings --- laser cladding --- PVD --- superhydrophobic coatings --- composite coatings --- n/a --- W-Cr-C coating
Choose an application
Very recently, a great deal of attention has been paid by researchers and technologists to trying to eliminate metal materials in the design of products and processes in favor of plastics and composites. After a few years, it is possible to state that metal materials are even more present in our lives and this is especially thanks to their ability to evolve. This Special Issue is focused on the recent evolution of metals and alloys with the scope of presenting the state of the art of solutions where metallic materials have become established, without a doubt, as a successful design solution thanks to their unique properties.
material properties prediction --- experimental data analysis --- ductile/spheroidal cast iron (SGI) --- compact graphite cast iron (CGI) --- Machine Learning (RF) --- pattern recognition --- Random Forest (RF) --- Artificial Neural Network (NN) --- k-nearest neighbours (kNN) --- tribology --- wear --- slurry erosion --- coating --- cermet --- spheroidal graphite cast iron --- pack aluminizing --- microstructure --- high-temperature oxidation resistance --- hybrid composite --- wear performance --- ZA27 alloy --- deflection --- plates --- stiffeners --- numerical simulation --- Constructal Design --- austenitic stainless steel --- tensile properties --- artificial neural network --- MIV analysis --- pallet rack --- moment-rotation curve --- connection --- experiment --- numerical analysis --- thermomechanical processing --- grain growth --- forging --- retained austenite --- bainitic microstructure --- extended finite element method (xFEM) --- polarization curve --- long-term operated metals --- hybrid materials --- fatigue crack growth --- stress intensity factors (SIF) --- linear regression --- micromagnetic testing --- hardness --- case hardening depth --- phase-field modeling --- modified damage model --- large-strain plasticity --- S355J2+N steel --- ductile fracture --- two-stage yield function --- copper coatings --- pulsating current (PC) --- composite hardness models --- creep resistance --- n/a
Choose an application
Very recently, a great deal of attention has been paid by researchers and technologists to trying to eliminate metal materials in the design of products and processes in favor of plastics and composites. After a few years, it is possible to state that metal materials are even more present in our lives and this is especially thanks to their ability to evolve. This Special Issue is focused on the recent evolution of metals and alloys with the scope of presenting the state of the art of solutions where metallic materials have become established, without a doubt, as a successful design solution thanks to their unique properties.
Technology: general issues --- material properties prediction --- experimental data analysis --- ductile/spheroidal cast iron (SGI) --- compact graphite cast iron (CGI) --- Machine Learning (RF) --- pattern recognition --- Random Forest (RF) --- Artificial Neural Network (NN) --- k-nearest neighbours (kNN) --- tribology --- wear --- slurry erosion --- coating --- cermet --- spheroidal graphite cast iron --- pack aluminizing --- microstructure --- high-temperature oxidation resistance --- hybrid composite --- wear performance --- ZA27 alloy --- deflection --- plates --- stiffeners --- numerical simulation --- Constructal Design --- austenitic stainless steel --- tensile properties --- artificial neural network --- MIV analysis --- pallet rack --- moment-rotation curve --- connection --- experiment --- numerical analysis --- thermomechanical processing --- grain growth --- forging --- retained austenite --- bainitic microstructure --- extended finite element method (xFEM) --- polarization curve --- long-term operated metals --- hybrid materials --- fatigue crack growth --- stress intensity factors (SIF) --- linear regression --- micromagnetic testing --- hardness --- case hardening depth --- phase-field modeling --- modified damage model --- large-strain plasticity --- S355J2+N steel --- ductile fracture --- two-stage yield function --- copper coatings --- pulsating current (PC) --- composite hardness models --- creep resistance
Listing 1 - 10 of 13 | << page >> |
Sort by
|