Listing 1 - 4 of 4 |
Sort by
|
Choose an application
In the midst of the First World War concern arose as to the virtues of pursuing intoxication at a time of national emergency. As the military front was supposedly let down by drinkers and shirkers at home, attention quickly turned to British drinking practices. Britain, it seemed, was under the duress of a widespread addiction to boozing. When prohibition was deemed too extreme to contemplate, and nationalisation too impractical, the government created an organisation known as the Central Control Board (CCB). This body soon set about reforming the drinking habits of a nation. Loved by a few, but disliked by most, this group was responsible for the most radical and unique experiment in alcohol control ever conducted in Britain. The story of the CCB, how and why it was formed, its history and its legacy upon the British war effort are told within Pubs and Patriots: The Drink Crisis in Britain during World War One.
Alcohol --- Liquor laws --- Alcoholic beverage control --- Drinking laws --- Drinking of alcoholic beverages --- High license --- Law, Liquor --- Liquor industry --- Liquors --- Temperance --- Beverages --- Drinking alcohol --- Grain alcohol --- Potable alcohol --- Intoxicants --- Alcohols --- Law and legislation --- History --- Great Britain. --- CCB (Great Britain. Central Control Board (Liquor Traffic)) --- C.C.B. (Great Britain. Central Control Board (Liquor Traffic)) --- World War, 1914-1918
Choose an application
Recent trends in vehicle engineering are testament to the great efforts that scientists and industries have made to seek solutions to enhance both the performance and safety of vehicular systems. This Special Issue aims to contribute to the study of modern vehicle dynamics, attracting recent experimental and in-simulation advances that are the basis for current technological growth and future mobility. The area involves research, studies, and projects derived from vehicle dynamics that aim to enhance vehicle performance in terms of handling, comfort, and adherence, and to examine safety optimization in the emerging contexts of smart, connected, and autonomous driving.This Special Issue focuses on new findings in the following topics:(1) Experimental and modelling activities that aim to investigate interaction phenomena from the macroscale, analyzing vehicle data, to the microscale, accounting for local contact mechanics; (2) Control strategies focused on vehicle performance enhancement, in terms of handling/grip, comfort and safety for passengers, motorsports, and future mobility scenarios; (3) Innovative technologies to improve the safety and performance of the vehicle and its subsystems; (4) Identification of vehicle and tire/wheel model parameters and status with innovative methodologies and algorithms; (5) Implementation of real-time software, logics, and models in onboard architectures and driving simulators; (6) Studies and analyses oriented toward the correlation among the factors affecting vehicle performance and safety; (7) Application use cases in road and off-road vehicles, e-bikes, motorcycles, buses, trucks, etc.
Technology: general issues --- History of engineering & technology --- tire model parameters identification --- artificial neural networks --- curve fitting --- Pacejka’s magic formula --- intelligent vehicles --- autonomous vehicles --- microscopic traffic simulation --- autonomous driving --- friction estimate --- tire-based control --- ADAS --- potential friction --- energy consumption and recovery --- transmission layouts --- fuel-cell electric vehicles --- adhesion enhancement --- dimple model --- patterned surfaces --- viscoelasticity --- enhancement --- articulated vehicles --- stability analysis --- nonlinear dynamic model --- snake instability --- eigenvalue analysis --- central control --- non-linear model-based predictive control --- pitch behavior --- predictive control --- roll behavior --- self-steering behavior --- vehicle dynamics --- viscoelastic modulus --- rubber --- friction --- empirical modeling --- autonomous emergency steering --- multi-input multi-output model predictive control --- actuator dynamics --- control allocation --- handling enhancement --- road friction --- wear --- tyre --- suspension --- semi-active --- handling --- comfort --- optimisation --- directional stability --- road profile --- road unevenness --- vehicle-road interaction --- vertical vehicle excitation --- tire models --- tire tread --- motorcycle --- rider --- screw axis --- weave --- wobble --- multibody --- gravel pavement --- roughness --- straightedge --- power spectral density --- international roughness index --- vehicle response --- driving comfort --- sky-hook --- in-wheel motor --- semi-active suspension --- quarter-car model --- suspension performance --- suspension test bench --- vehicle stability --- road models --- quarter car models --- limit cycles --- acceleration speed portraits --- speed oscillations --- velocity bifurcations --- noisy limit cycles --- limit flows of trajectories --- Sommerfeld effects --- differential-algebraic systems --- polar coordinates of roads --- covariance equations --- stability in mean --- supercritical speeds --- analytical travel speed amplitudes --- Floquet theory applied to limit cycles --- non-pneumatic tire --- finite element analysis --- steady state analysis --- tire characterization --- footprint --- contact patch --- longitudinal interaction --- n/a --- Pacejka's magic formula
Choose an application
Recent trends in vehicle engineering are testament to the great efforts that scientists and industries have made to seek solutions to enhance both the performance and safety of vehicular systems. This Special Issue aims to contribute to the study of modern vehicle dynamics, attracting recent experimental and in-simulation advances that are the basis for current technological growth and future mobility. The area involves research, studies, and projects derived from vehicle dynamics that aim to enhance vehicle performance in terms of handling, comfort, and adherence, and to examine safety optimization in the emerging contexts of smart, connected, and autonomous driving.This Special Issue focuses on new findings in the following topics:(1) Experimental and modelling activities that aim to investigate interaction phenomena from the macroscale, analyzing vehicle data, to the microscale, accounting for local contact mechanics; (2) Control strategies focused on vehicle performance enhancement, in terms of handling/grip, comfort and safety for passengers, motorsports, and future mobility scenarios; (3) Innovative technologies to improve the safety and performance of the vehicle and its subsystems; (4) Identification of vehicle and tire/wheel model parameters and status with innovative methodologies and algorithms; (5) Implementation of real-time software, logics, and models in onboard architectures and driving simulators; (6) Studies and analyses oriented toward the correlation among the factors affecting vehicle performance and safety; (7) Application use cases in road and off-road vehicles, e-bikes, motorcycles, buses, trucks, etc.
tire model parameters identification --- artificial neural networks --- curve fitting --- Pacejka’s magic formula --- intelligent vehicles --- autonomous vehicles --- microscopic traffic simulation --- autonomous driving --- friction estimate --- tire-based control --- ADAS --- potential friction --- energy consumption and recovery --- transmission layouts --- fuel-cell electric vehicles --- adhesion enhancement --- dimple model --- patterned surfaces --- viscoelasticity --- enhancement --- articulated vehicles --- stability analysis --- nonlinear dynamic model --- snake instability --- eigenvalue analysis --- central control --- non-linear model-based predictive control --- pitch behavior --- predictive control --- roll behavior --- self-steering behavior --- vehicle dynamics --- viscoelastic modulus --- rubber --- friction --- empirical modeling --- autonomous emergency steering --- multi-input multi-output model predictive control --- actuator dynamics --- control allocation --- handling enhancement --- road friction --- wear --- tyre --- suspension --- semi-active --- handling --- comfort --- optimisation --- directional stability --- road profile --- road unevenness --- vehicle-road interaction --- vertical vehicle excitation --- tire models --- tire tread --- motorcycle --- rider --- screw axis --- weave --- wobble --- multibody --- gravel pavement --- roughness --- straightedge --- power spectral density --- international roughness index --- vehicle response --- driving comfort --- sky-hook --- in-wheel motor --- semi-active suspension --- quarter-car model --- suspension performance --- suspension test bench --- vehicle stability --- road models --- quarter car models --- limit cycles --- acceleration speed portraits --- speed oscillations --- velocity bifurcations --- noisy limit cycles --- limit flows of trajectories --- Sommerfeld effects --- differential-algebraic systems --- polar coordinates of roads --- covariance equations --- stability in mean --- supercritical speeds --- analytical travel speed amplitudes --- Floquet theory applied to limit cycles --- non-pneumatic tire --- finite element analysis --- steady state analysis --- tire characterization --- footprint --- contact patch --- longitudinal interaction --- n/a --- Pacejka's magic formula
Choose an application
Recent trends in vehicle engineering are testament to the great efforts that scientists and industries have made to seek solutions to enhance both the performance and safety of vehicular systems. This Special Issue aims to contribute to the study of modern vehicle dynamics, attracting recent experimental and in-simulation advances that are the basis for current technological growth and future mobility. The area involves research, studies, and projects derived from vehicle dynamics that aim to enhance vehicle performance in terms of handling, comfort, and adherence, and to examine safety optimization in the emerging contexts of smart, connected, and autonomous driving.This Special Issue focuses on new findings in the following topics:(1) Experimental and modelling activities that aim to investigate interaction phenomena from the macroscale, analyzing vehicle data, to the microscale, accounting for local contact mechanics; (2) Control strategies focused on vehicle performance enhancement, in terms of handling/grip, comfort and safety for passengers, motorsports, and future mobility scenarios; (3) Innovative technologies to improve the safety and performance of the vehicle and its subsystems; (4) Identification of vehicle and tire/wheel model parameters and status with innovative methodologies and algorithms; (5) Implementation of real-time software, logics, and models in onboard architectures and driving simulators; (6) Studies and analyses oriented toward the correlation among the factors affecting vehicle performance and safety; (7) Application use cases in road and off-road vehicles, e-bikes, motorcycles, buses, trucks, etc.
Technology: general issues --- History of engineering & technology --- tire model parameters identification --- artificial neural networks --- curve fitting --- Pacejka's magic formula --- intelligent vehicles --- autonomous vehicles --- microscopic traffic simulation --- autonomous driving --- friction estimate --- tire-based control --- ADAS --- potential friction --- energy consumption and recovery --- transmission layouts --- fuel-cell electric vehicles --- adhesion enhancement --- dimple model --- patterned surfaces --- viscoelasticity --- enhancement --- articulated vehicles --- stability analysis --- nonlinear dynamic model --- snake instability --- eigenvalue analysis --- central control --- non-linear model-based predictive control --- pitch behavior --- predictive control --- roll behavior --- self-steering behavior --- vehicle dynamics --- viscoelastic modulus --- rubber --- friction --- empirical modeling --- autonomous emergency steering --- multi-input multi-output model predictive control --- actuator dynamics --- control allocation --- handling enhancement --- road friction --- wear --- tyre --- suspension --- semi-active --- handling --- comfort --- optimisation --- directional stability --- road profile --- road unevenness --- vehicle-road interaction --- vertical vehicle excitation --- tire models --- tire tread --- motorcycle --- rider --- screw axis --- weave --- wobble --- multibody --- gravel pavement --- roughness --- straightedge --- power spectral density --- international roughness index --- vehicle response --- driving comfort --- sky-hook --- in-wheel motor --- semi-active suspension --- quarter-car model --- suspension performance --- suspension test bench --- vehicle stability --- road models --- quarter car models --- limit cycles --- acceleration speed portraits --- speed oscillations --- velocity bifurcations --- noisy limit cycles --- limit flows of trajectories --- Sommerfeld effects --- differential-algebraic systems --- polar coordinates of roads --- covariance equations --- stability in mean --- supercritical speeds --- analytical travel speed amplitudes --- Floquet theory applied to limit cycles --- non-pneumatic tire --- finite element analysis --- steady state analysis --- tire characterization --- footprint --- contact patch --- longitudinal interaction
Listing 1 - 4 of 4 |
Sort by
|