Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

ULiège (1)

VIVES (1)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2020 (3)

Listing 1 - 3 of 3
Sort by

Book
Carbon-Based Polymer Nanocomposites for High-Performance Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Carbon-based nanomaterials such as carbon nanotubes, graphene and its derivatives, nanodiamond, fullerenes, and other nano-sized carbon allotropes have recently attracted a lot of attention among the scientific community due to their enormous potential for a wide number of applications arising from their large specific surface area, high electrical and thermal conductivity, and good mechanical properties. The combination of carbon nanomaterials with polymers leads to new nanocomposites with improved structural and functional properties due to synergistic effects. In particular, the properties of carbon-based polymer nanocomposites can be easily tuned by carefully controlling the carbon nanomaterial synthesis route and additionally the versatile synergistic interactions amongst the nanomaterials and polymers. This book provides selected examples of the most recent advances regarding carbon nanomaterial-reinforced polymeric composites. It includes the most representative types of polymeric matrices and covers aspects of new processing techniques, novel surface modifications of carbon nanomaterials and their applications in diverse fields, in particular in electronics and energy storage.

Keywords

multi walled carbon nanotubes --- polyacrylonitrile --- nascent fiber --- thermal properties --- morphological structure --- nanocomposites --- graphene --- melt processing --- mechanical properties --- electrical conductivity --- electrostatic spraying --- multi-walled carbon nanotubes --- waterborne polyurethane coating --- dispersity --- surface hardness --- wear rate --- friction coefficient --- in-mold decoration injection molding --- microcellular injection molding --- surface quality --- warpage --- multiwalled carbon nanotube --- hyaluronic acid --- microfibers --- wet-spinning --- microstructures --- tensile properties --- Ag --- CNT --- flexible supercapacitor electrode --- polymer conductive film --- cellulose acetate membrane --- PANI --- graphene oxide --- hexamethylene diisocyanate --- nanocomposite --- thermal stability --- polydiphenylamine-2-carboxylic acid --- single-walled carbon nanotubes --- conjugated polymers --- in situ oxidative polymerization --- hybrid nanocomposites --- polypropylene --- carbon nanotube --- titanium dioxide --- reduced graphene oxide --- polyurethane foam --- flexible electronics --- pressure sensing --- polyethyleneimine --- thermoelectric properties --- carrier type --- Paal-Knorr reaction --- polyketone --- carbon nanotubes --- Diels-Alder --- click-chemistry --- hydrogen bonding --- self-healing --- re-workability --- recycling --- Joule heating --- flexible electrode --- cross-linked acrylamide/alginate --- tensile strength --- impedance spectroscopy --- polymer electrolyte --- Li-ion micro-batteries --- flexible anode --- pre-lithiation --- carbon-based polymer nanocomposite --- energy storage --- fuel cell --- electrochemical devices --- n/a


Book
Carbon-Based Polymer Nanocomposites for High-Performance Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Carbon-based nanomaterials such as carbon nanotubes, graphene and its derivatives, nanodiamond, fullerenes, and other nano-sized carbon allotropes have recently attracted a lot of attention among the scientific community due to their enormous potential for a wide number of applications arising from their large specific surface area, high electrical and thermal conductivity, and good mechanical properties. The combination of carbon nanomaterials with polymers leads to new nanocomposites with improved structural and functional properties due to synergistic effects. In particular, the properties of carbon-based polymer nanocomposites can be easily tuned by carefully controlling the carbon nanomaterial synthesis route and additionally the versatile synergistic interactions amongst the nanomaterials and polymers. This book provides selected examples of the most recent advances regarding carbon nanomaterial-reinforced polymeric composites. It includes the most representative types of polymeric matrices and covers aspects of new processing techniques, novel surface modifications of carbon nanomaterials and their applications in diverse fields, in particular in electronics and energy storage.

Keywords

Technology: general issues --- multi walled carbon nanotubes --- polyacrylonitrile --- nascent fiber --- thermal properties --- morphological structure --- nanocomposites --- graphene --- melt processing --- mechanical properties --- electrical conductivity --- electrostatic spraying --- multi-walled carbon nanotubes --- waterborne polyurethane coating --- dispersity --- surface hardness --- wear rate --- friction coefficient --- in-mold decoration injection molding --- microcellular injection molding --- surface quality --- warpage --- multiwalled carbon nanotube --- hyaluronic acid --- microfibers --- wet-spinning --- microstructures --- tensile properties --- Ag --- CNT --- flexible supercapacitor electrode --- polymer conductive film --- cellulose acetate membrane --- PANI --- graphene oxide --- hexamethylene diisocyanate --- nanocomposite --- thermal stability --- polydiphenylamine-2-carboxylic acid --- single-walled carbon nanotubes --- conjugated polymers --- in situ oxidative polymerization --- hybrid nanocomposites --- polypropylene --- carbon nanotube --- titanium dioxide --- reduced graphene oxide --- polyurethane foam --- flexible electronics --- pressure sensing --- polyethyleneimine --- thermoelectric properties --- carrier type --- Paal-Knorr reaction --- polyketone --- carbon nanotubes --- Diels-Alder --- click-chemistry --- hydrogen bonding --- self-healing --- re-workability --- recycling --- Joule heating --- flexible electrode --- cross-linked acrylamide/alginate --- tensile strength --- impedance spectroscopy --- polymer electrolyte --- Li-ion micro-batteries --- flexible anode --- pre-lithiation --- carbon-based polymer nanocomposite --- energy storage --- fuel cell --- electrochemical devices --- multi walled carbon nanotubes --- polyacrylonitrile --- nascent fiber --- thermal properties --- morphological structure --- nanocomposites --- graphene --- melt processing --- mechanical properties --- electrical conductivity --- electrostatic spraying --- multi-walled carbon nanotubes --- waterborne polyurethane coating --- dispersity --- surface hardness --- wear rate --- friction coefficient --- in-mold decoration injection molding --- microcellular injection molding --- surface quality --- warpage --- multiwalled carbon nanotube --- hyaluronic acid --- microfibers --- wet-spinning --- microstructures --- tensile properties --- Ag --- CNT --- flexible supercapacitor electrode --- polymer conductive film --- cellulose acetate membrane --- PANI --- graphene oxide --- hexamethylene diisocyanate --- nanocomposite --- thermal stability --- polydiphenylamine-2-carboxylic acid --- single-walled carbon nanotubes --- conjugated polymers --- in situ oxidative polymerization --- hybrid nanocomposites --- polypropylene --- carbon nanotube --- titanium dioxide --- reduced graphene oxide --- polyurethane foam --- flexible electronics --- pressure sensing --- polyethyleneimine --- thermoelectric properties --- carrier type --- Paal-Knorr reaction --- polyketone --- carbon nanotubes --- Diels-Alder --- click-chemistry --- hydrogen bonding --- self-healing --- re-workability --- recycling --- Joule heating --- flexible electrode --- cross-linked acrylamide/alginate --- tensile strength --- impedance spectroscopy --- polymer electrolyte --- Li-ion micro-batteries --- flexible anode --- pre-lithiation --- carbon-based polymer nanocomposite --- energy storage --- fuel cell --- electrochemical devices


Book
Carbon-Based Polymer Nanocomposites for High-Performance Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Carbon-based nanomaterials such as carbon nanotubes, graphene and its derivatives, nanodiamond, fullerenes, and other nano-sized carbon allotropes have recently attracted a lot of attention among the scientific community due to their enormous potential for a wide number of applications arising from their large specific surface area, high electrical and thermal conductivity, and good mechanical properties. The combination of carbon nanomaterials with polymers leads to new nanocomposites with improved structural and functional properties due to synergistic effects. In particular, the properties of carbon-based polymer nanocomposites can be easily tuned by carefully controlling the carbon nanomaterial synthesis route and additionally the versatile synergistic interactions amongst the nanomaterials and polymers. This book provides selected examples of the most recent advances regarding carbon nanomaterial-reinforced polymeric composites. It includes the most representative types of polymeric matrices and covers aspects of new processing techniques, novel surface modifications of carbon nanomaterials and their applications in diverse fields, in particular in electronics and energy storage.

Keywords

Technology: general issues --- multi walled carbon nanotubes --- polyacrylonitrile --- nascent fiber --- thermal properties --- morphological structure --- nanocomposites --- graphene --- melt processing --- mechanical properties --- electrical conductivity --- electrostatic spraying --- multi-walled carbon nanotubes --- waterborne polyurethane coating --- dispersity --- surface hardness --- wear rate --- friction coefficient --- in-mold decoration injection molding --- microcellular injection molding --- surface quality --- warpage --- multiwalled carbon nanotube --- hyaluronic acid --- microfibers --- wet-spinning --- microstructures --- tensile properties --- Ag --- CNT --- flexible supercapacitor electrode --- polymer conductive film --- cellulose acetate membrane --- PANI --- graphene oxide --- hexamethylene diisocyanate --- nanocomposite --- thermal stability --- polydiphenylamine-2-carboxylic acid --- single-walled carbon nanotubes --- conjugated polymers --- in situ oxidative polymerization --- hybrid nanocomposites --- polypropylene --- carbon nanotube --- titanium dioxide --- reduced graphene oxide --- polyurethane foam --- flexible electronics --- pressure sensing --- polyethyleneimine --- thermoelectric properties --- carrier type --- Paal-Knorr reaction --- polyketone --- carbon nanotubes --- Diels-Alder --- click-chemistry --- hydrogen bonding --- self-healing --- re-workability --- recycling --- Joule heating --- flexible electrode --- cross-linked acrylamide/alginate --- tensile strength --- impedance spectroscopy --- polymer electrolyte --- Li-ion micro-batteries --- flexible anode --- pre-lithiation --- carbon-based polymer nanocomposite --- energy storage --- fuel cell --- electrochemical devices --- n/a

Listing 1 - 3 of 3
Sort by