Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

Vlaams Parlement (2)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2022 (2)

2021 (3)

Listing 1 - 5 of 5
Sort by

Book
Cellular Metals: Fabrication, Properties and Applications
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Cellular solids and porous metals have become some of the most promising lightweight multifunctional materials due to their superior combination of advanced properties mainly derived from their base material and cellular structure. They are used in a wide range of commercial, biomedical, industrial, and military applications. In contrast to other cellular materials, cellular metals are non-flammable, recyclable, extremely tough, and chemically stable and are excellent energy absorbers. The manuscripts of this Special Issue provide a representative insight into the recent developments in this field, covering topics related to manufacturing, characterization, properties, specific challenges in transportation, and the description of structural features. For example, a presented strategy for the strengthening of Al-alloy foams is the addition of alloying elements (e.g., magnesium) into the metal bulk matrix to promote the formation of intermetallics (e.g., precipitation hardening). The incorporation of micro-sized and nano-sized reinforcement elements (e.g., carbon nanotubes and graphene oxide) into the metal bulk matrix to enhance the performance of the ductile metal is presented. New bioinspired cellular materials, such as nanocomposite foams, lattice materials, and hybrid foams and structures are also discussed (e.g., filled hollow structures, metal-polymer hybrid cellular structures).

Keywords

Technology: general issues --- semi-solid --- aluminum foam --- primary crystals --- SIMA process --- slope casting --- pore morphology --- aluminium alloy foam --- recycling --- beverage cans --- direct foaming method --- A-242 alloy --- cellular materials --- composites --- friction welding --- foam --- recycle --- compression test --- precipitation phase --- age hardening --- aluminum alloy foams --- powder metallurgy --- continuous production --- mechanical properties --- gradient compressed porous metal --- sound absorption performance --- optimal parameters --- theoretical modeling --- cuckoo search algorithm --- finite element simulation --- experimental validation --- enclosed gas --- anisotropy --- elasticity --- plasticity --- multiaxial yielding --- open-cell aluminum foam --- epoxy resin --- graphene oxide --- hybrid structures --- mechanical --- thermal and acoustic properties --- metal foam --- aluminum alloys --- grain refinement --- modification --- microstructure --- mechanics of materials --- metallurgy --- melt treatment --- CALPHAD --- liquid fraction, X-ray diffraction --- X-ray radioscopy --- X-ray tomography --- X-ray tomoscopy --- porous metal --- drainage --- clogging --- lattice material --- topology optimisation --- crystal inspiration --- energy absorption --- cellular metals --- X-ray computed tomography --- infrared thermography --- mechanical characterization --- thermal characterization --- acoustic characterization --- open-cell foam --- polyurethane foam --- graphene-based materials --- nanocomposites --- unidirectional cellular structure --- porosity --- fabrication --- explosive compaction --- metallography --- computational simulation --- experimental tests --- aluminum matrix foam composite (AMFC) --- MWCNT --- chemical oxidation --- electroless deposition nickel --- expansion --- n/a


Book
Mechanics of Corrugated and Composite Materials
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Corrugated and composite materials can significantly outperform traditional materials. Nowadays, such materials have gained more and more attention and application not only in theoretical, experimental or numerical scientific studies but also in daily industrial problems, which require innovative solutions. The specific geometry of a corrugated layer, or the combination of two or more materials in the structures allows the mechanical properties with specific features favorable for use in a specific engineering problem to be obtained. For example, due to the specific compositions of the corrugated materials, the ratio of the load capacity to the weight of the sections is much higher than that of traditional solid sections. Therefore, such materials should be used when the weight of the structure must be optimized or the structure must have openwork geometry. Among others, the composites can be employed for a variety of purposes, for example, in corrugated boards in the packaging industry; in soft-core sandwich panels, window frames in structural engineering; in wings in commercial, civilian and military aerospace applications; in the vehicle and its equipment devices, including, panels, frames or other interior components; in fans, grating, tanks, ducts and pumps in environmental installations; in electrical engineering in switchgear, motor controls, control system components or circuit breakers; and in many more. This Special Issue “Mechanics of Corrugated and Composite Materials” addresses selected knowledge gaps and aids advance in this area.

Keywords

corrugated board --- numerical homogenization --- strain energy equivalence --- finite element method --- plate stiffness properties --- shell structures --- transverse shear --- corrugated cardboard --- edge crush test --- orthotropic elasticity --- digital image correlation --- composites --- sandwich panel --- composite structural insulated panel --- magnesium oxide board --- bimodular material --- experimental mechanics --- computational mechanics --- finite element analysis --- perforation --- creasing --- flexural stiffness --- torsional stiffness --- sandwich panels --- local instability --- strain energy --- wrinkling --- orthotropic core --- box strength estimation --- packaging flaps --- crease line shifting --- compressive stiffness --- corrugated box --- compression strength --- pallet --- unit load --- unit load optimization --- composite sandwich structures --- thin-walled structures --- anisotropic material --- corrugated core --- homogenization approach --- first-order shear deformation theory --- FSDT --- FEM simulation --- design process --- aluminium-timber structures --- laminated veneer lumber (LVL) --- toothed plate --- screwed connection --- shear connection --- push-out test --- honeycomb panels --- starch --- impregnation --- climatic conditions --- strength --- stiffness --- energy absorption --- homogenization method --- lattice materials --- periodic cellular materials --- multiscale mechanics --- aluminium powder --- detonation --- explosive --- combustion --- oxidation --- equation of state --- n/a --- localizing gradient damage --- gradient activity function --- tension --- concrete cracking --- impact load --- dynamics --- air operation safety --- flying risk --- risk management --- unmanned aerial vehicles


Book
Cellular Metals: Fabrication, Properties and Applications
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Cellular solids and porous metals have become some of the most promising lightweight multifunctional materials due to their superior combination of advanced properties mainly derived from their base material and cellular structure. They are used in a wide range of commercial, biomedical, industrial, and military applications. In contrast to other cellular materials, cellular metals are non-flammable, recyclable, extremely tough, and chemically stable and are excellent energy absorbers. The manuscripts of this Special Issue provide a representative insight into the recent developments in this field, covering topics related to manufacturing, characterization, properties, specific challenges in transportation, and the description of structural features. For example, a presented strategy for the strengthening of Al-alloy foams is the addition of alloying elements (e.g., magnesium) into the metal bulk matrix to promote the formation of intermetallics (e.g., precipitation hardening). The incorporation of micro-sized and nano-sized reinforcement elements (e.g., carbon nanotubes and graphene oxide) into the metal bulk matrix to enhance the performance of the ductile metal is presented. New bioinspired cellular materials, such as nanocomposite foams, lattice materials, and hybrid foams and structures are also discussed (e.g., filled hollow structures, metal-polymer hybrid cellular structures).

Keywords

semi-solid --- aluminum foam --- primary crystals --- SIMA process --- slope casting --- pore morphology --- aluminium alloy foam --- recycling --- beverage cans --- direct foaming method --- A-242 alloy --- cellular materials --- composites --- friction welding --- foam --- recycle --- compression test --- precipitation phase --- age hardening --- aluminum alloy foams --- powder metallurgy --- continuous production --- mechanical properties --- gradient compressed porous metal --- sound absorption performance --- optimal parameters --- theoretical modeling --- cuckoo search algorithm --- finite element simulation --- experimental validation --- enclosed gas --- anisotropy --- elasticity --- plasticity --- multiaxial yielding --- open-cell aluminum foam --- epoxy resin --- graphene oxide --- hybrid structures --- mechanical --- thermal and acoustic properties --- metal foam --- aluminum alloys --- grain refinement --- modification --- microstructure --- mechanics of materials --- metallurgy --- melt treatment --- CALPHAD --- liquid fraction, X-ray diffraction --- X-ray radioscopy --- X-ray tomography --- X-ray tomoscopy --- porous metal --- drainage --- clogging --- lattice material --- topology optimisation --- crystal inspiration --- energy absorption --- cellular metals --- X-ray computed tomography --- infrared thermography --- mechanical characterization --- thermal characterization --- acoustic characterization --- open-cell foam --- polyurethane foam --- graphene-based materials --- nanocomposites --- unidirectional cellular structure --- porosity --- fabrication --- explosive compaction --- metallography --- computational simulation --- experimental tests --- aluminum matrix foam composite (AMFC) --- MWCNT --- chemical oxidation --- electroless deposition nickel --- expansion --- n/a


Book
Mechanics of Corrugated and Composite Materials
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Corrugated and composite materials can significantly outperform traditional materials. Nowadays, such materials have gained more and more attention and application not only in theoretical, experimental or numerical scientific studies but also in daily industrial problems, which require innovative solutions. The specific geometry of a corrugated layer, or the combination of two or more materials in the structures allows the mechanical properties with specific features favorable for use in a specific engineering problem to be obtained. For example, due to the specific compositions of the corrugated materials, the ratio of the load capacity to the weight of the sections is much higher than that of traditional solid sections. Therefore, such materials should be used when the weight of the structure must be optimized or the structure must have openwork geometry. Among others, the composites can be employed for a variety of purposes, for example, in corrugated boards in the packaging industry; in soft-core sandwich panels, window frames in structural engineering; in wings in commercial, civilian and military aerospace applications; in the vehicle and its equipment devices, including, panels, frames or other interior components; in fans, grating, tanks, ducts and pumps in environmental installations; in electrical engineering in switchgear, motor controls, control system components or circuit breakers; and in many more. This Special Issue “Mechanics of Corrugated and Composite Materials” addresses selected knowledge gaps and aids advance in this area.

Keywords

Technology: general issues --- History of engineering & technology --- corrugated board --- numerical homogenization --- strain energy equivalence --- finite element method --- plate stiffness properties --- shell structures --- transverse shear --- corrugated cardboard --- edge crush test --- orthotropic elasticity --- digital image correlation --- composites --- sandwich panel --- composite structural insulated panel --- magnesium oxide board --- bimodular material --- experimental mechanics --- computational mechanics --- finite element analysis --- perforation --- creasing --- flexural stiffness --- torsional stiffness --- sandwich panels --- local instability --- strain energy --- wrinkling --- orthotropic core --- box strength estimation --- packaging flaps --- crease line shifting --- compressive stiffness --- corrugated box --- compression strength --- pallet --- unit load --- unit load optimization --- composite sandwich structures --- thin-walled structures --- anisotropic material --- corrugated core --- homogenization approach --- first-order shear deformation theory --- FSDT --- FEM simulation --- design process --- aluminium-timber structures --- laminated veneer lumber (LVL) --- toothed plate --- screwed connection --- shear connection --- push-out test --- honeycomb panels --- starch --- impregnation --- climatic conditions --- strength --- stiffness --- energy absorption --- homogenization method --- lattice materials --- periodic cellular materials --- multiscale mechanics --- aluminium powder --- detonation --- explosive --- combustion --- oxidation --- equation of state --- localizing gradient damage --- gradient activity function --- tension --- concrete cracking --- impact load --- dynamics --- air operation safety --- flying risk --- risk management --- unmanned aerial vehicles


Book
Cellular Metals: Fabrication, Properties and Applications
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Cellular solids and porous metals have become some of the most promising lightweight multifunctional materials due to their superior combination of advanced properties mainly derived from their base material and cellular structure. They are used in a wide range of commercial, biomedical, industrial, and military applications. In contrast to other cellular materials, cellular metals are non-flammable, recyclable, extremely tough, and chemically stable and are excellent energy absorbers. The manuscripts of this Special Issue provide a representative insight into the recent developments in this field, covering topics related to manufacturing, characterization, properties, specific challenges in transportation, and the description of structural features. For example, a presented strategy for the strengthening of Al-alloy foams is the addition of alloying elements (e.g., magnesium) into the metal bulk matrix to promote the formation of intermetallics (e.g., precipitation hardening). The incorporation of micro-sized and nano-sized reinforcement elements (e.g., carbon nanotubes and graphene oxide) into the metal bulk matrix to enhance the performance of the ductile metal is presented. New bioinspired cellular materials, such as nanocomposite foams, lattice materials, and hybrid foams and structures are also discussed (e.g., filled hollow structures, metal-polymer hybrid cellular structures).

Keywords

Technology: general issues --- semi-solid --- aluminum foam --- primary crystals --- SIMA process --- slope casting --- pore morphology --- aluminium alloy foam --- recycling --- beverage cans --- direct foaming method --- A-242 alloy --- cellular materials --- composites --- friction welding --- foam --- recycle --- compression test --- precipitation phase --- age hardening --- aluminum alloy foams --- powder metallurgy --- continuous production --- mechanical properties --- gradient compressed porous metal --- sound absorption performance --- optimal parameters --- theoretical modeling --- cuckoo search algorithm --- finite element simulation --- experimental validation --- enclosed gas --- anisotropy --- elasticity --- plasticity --- multiaxial yielding --- open-cell aluminum foam --- epoxy resin --- graphene oxide --- hybrid structures --- mechanical --- thermal and acoustic properties --- metal foam --- aluminum alloys --- grain refinement --- modification --- microstructure --- mechanics of materials --- metallurgy --- melt treatment --- CALPHAD --- liquid fraction, X-ray diffraction --- X-ray radioscopy --- X-ray tomography --- X-ray tomoscopy --- porous metal --- drainage --- clogging --- lattice material --- topology optimisation --- crystal inspiration --- energy absorption --- cellular metals --- X-ray computed tomography --- infrared thermography --- mechanical characterization --- thermal characterization --- acoustic characterization --- open-cell foam --- polyurethane foam --- graphene-based materials --- nanocomposites --- unidirectional cellular structure --- porosity --- fabrication --- explosive compaction --- metallography --- computational simulation --- experimental tests --- aluminum matrix foam composite (AMFC) --- MWCNT --- chemical oxidation --- electroless deposition nickel --- expansion

Listing 1 - 5 of 5
Sort by