Narrow your search

Library

FARO (6)

KU Leuven (6)

LUCA School of Arts (6)

Odisee (6)

Thomas More Kempen (6)

Thomas More Mechelen (6)

UCLL (6)

ULiège (6)

VIVES (6)

Vlaams Parlement (6)

More...

Resource type

book (12)


Language

English (12)


Year
From To Submit

2022 (5)

2021 (2)

2020 (4)

2007 (1)

Listing 1 - 10 of 12 << page
of 2
>>
Sort by

Book
Catalytic soot oxidation by platinum on sintered metal filters. Influence of the platinum quantity, particle size and location, and investigation of the platinum-soot contact
Author:
ISBN: 1000005906 3866441037 Year: 2007 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

The great challenge for next years concerning the emission of diesel engines is to develop diesel particle filters (DPF) with catalytic regeneration systems. This work is focused on the global understanding of the diesel soot oxidation on sintered metal filters (SMF). Platinum is studied as reference catalyst. The first objective is to determine which of platinum quantity, platinum particle size, or platinum location exhibits the preponderant influence on the catalytic.

Keywords

platinum --- soot --- catalytic oxidation


Book
Layered Double Hydroxide-Based Catalytic Materials for Sustainable Processes
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Layered double hydroxides (LDHs), also known as two-dimensional anionic clays, as well as the derived materials, including hybrids, nanocomposites, mixed oxides, and supported metals, have been highlighted as outstanding heterogeneous catalysts with unlimited applications in various processes involving both acid–base (addition, alkylation, acylation, decarboxylation, etc.) and redox (oxidation, reduction, dehydrogenation, etc.) mechanisms. This is mainly due to their flexibility in chemical composition, allowing the fine tuning of the nature of the active sites and the control of the balance between them. Additionally, LDHs display a large anion exchange capacity and the possibility to modify their interlayer space, constraining the size and type of reactants entering in the interlamellar space. Furthermore, their easy and economic synthesis, with high levels of purity and efficiency, at both the laboratory and industrial scales, make LDHs and their derived materials excellent solid catalysts. This Special Issue collects original research papers, reviews, and commentaries focused on the catalytic applications of these remarkable materials.


Book
Layered Double Hydroxide-Based Catalytic Materials for Sustainable Processes
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Layered double hydroxides (LDHs), also known as two-dimensional anionic clays, as well as the derived materials, including hybrids, nanocomposites, mixed oxides, and supported metals, have been highlighted as outstanding heterogeneous catalysts with unlimited applications in various processes involving both acid–base (addition, alkylation, acylation, decarboxylation, etc.) and redox (oxidation, reduction, dehydrogenation, etc.) mechanisms. This is mainly due to their flexibility in chemical composition, allowing the fine tuning of the nature of the active sites and the control of the balance between them. Additionally, LDHs display a large anion exchange capacity and the possibility to modify their interlayer space, constraining the size and type of reactants entering in the interlamellar space. Furthermore, their easy and economic synthesis, with high levels of purity and efficiency, at both the laboratory and industrial scales, make LDHs and their derived materials excellent solid catalysts. This Special Issue collects original research papers, reviews, and commentaries focused on the catalytic applications of these remarkable materials.


Book
Catalysts and Processes for H2S Conversion to Sulfur
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Today, more stringent regulations on SOx emissions and growing environmental concerns have led to considerable attention on sulfur recovery from hydrogen sulfide (H2S). Hydrogen sulfide is commonly found in raw natural gas and biogas, even if a great amount is obtained through sweetening of sour natural gas and hydrodesulphurization of light hydrocarbons. It is highly toxic, extremely corrosive and flammable, and for these reasons, its elimination is necessary prior to emission in atmosphere. There are different technologies for the removal of H2S, the drawbacks of which are the high costs and limited H2S conversion efficiency. The main focus of this Special Issue will be on catalytic oxidation processes, but the issue is devoted to the development of catalysts able to maximize H2S conversion to sulfur minimizing SO2 formation, pursuing the goal of “zero SO2 emission”.This Special Issue is particularly devoted to the preparation of novel powdered/structured supported catalysts and their physical–chemical characterization, the study of the aspects concerning stability and reusability, as well as the phenomena that could underlie the deactivation of the catalyst.This Special Issue comprises seven articles, one communication, and one review regarding the desulfurization of sour gases and fuel oil, as well as the synthesis of novel adsorbents and catalysts for H2S abatement. In the following, a brief description of the papers included in this issue is provided to serve as an outline to encourage further reading.


Book
Layered Double Hydroxide-Based Catalytic Materials for Sustainable Processes
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Layered double hydroxides (LDHs), also known as two-dimensional anionic clays, as well as the derived materials, including hybrids, nanocomposites, mixed oxides, and supported metals, have been highlighted as outstanding heterogeneous catalysts with unlimited applications in various processes involving both acid–base (addition, alkylation, acylation, decarboxylation, etc.) and redox (oxidation, reduction, dehydrogenation, etc.) mechanisms. This is mainly due to their flexibility in chemical composition, allowing the fine tuning of the nature of the active sites and the control of the balance between them. Additionally, LDHs display a large anion exchange capacity and the possibility to modify their interlayer space, constraining the size and type of reactants entering in the interlamellar space. Furthermore, their easy and economic synthesis, with high levels of purity and efficiency, at both the laboratory and industrial scales, make LDHs and their derived materials excellent solid catalysts. This Special Issue collects original research papers, reviews, and commentaries focused on the catalytic applications of these remarkable materials.


Book
Catalysts and Processes for H2S Conversion to Sulfur
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Today, more stringent regulations on SOx emissions and growing environmental concerns have led to considerable attention on sulfur recovery from hydrogen sulfide (H2S). Hydrogen sulfide is commonly found in raw natural gas and biogas, even if a great amount is obtained through sweetening of sour natural gas and hydrodesulphurization of light hydrocarbons. It is highly toxic, extremely corrosive and flammable, and for these reasons, its elimination is necessary prior to emission in atmosphere. There are different technologies for the removal of H2S, the drawbacks of which are the high costs and limited H2S conversion efficiency. The main focus of this Special Issue will be on catalytic oxidation processes, but the issue is devoted to the development of catalysts able to maximize H2S conversion to sulfur minimizing SO2 formation, pursuing the goal of “zero SO2 emission”.This Special Issue is particularly devoted to the preparation of novel powdered/structured supported catalysts and their physical–chemical characterization, the study of the aspects concerning stability and reusability, as well as the phenomena that could underlie the deactivation of the catalyst.This Special Issue comprises seven articles, one communication, and one review regarding the desulfurization of sour gases and fuel oil, as well as the synthesis of novel adsorbents and catalysts for H2S abatement. In the following, a brief description of the papers included in this issue is provided to serve as an outline to encourage further reading.


Book
Catalysis by Metals on Perovskite-Type Oxides
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The acceptance and preference of the sensory properties of foods are among the most important criteria determining food choice. Sensory perception and our response to food products, and finally food choice itself, are affected by a myriad of intrinsic and extrinsic factors. The pressing question is, how do these factors specifically affect our acceptance and preference for foods, both in and of themselves, and in combination in various contexts, both fundamental and applied? In addition, which factors overall play the largest role in how we perceive and behave towards food in daily life? Finally, how can these factors be utilized to affect our preferences and final acceptance of real food and food products from industrial production and beyond for healthier eating? A closer look at trends in research showcasing the influence that these factors and our senses have on our perception and affective response to food products and our food choices is timely. Thus, in this Special Issue collection “Consumer Preferences and Acceptance of Food Products”, we bring together articles which encompass the wide scope of multidisciplinary research in the space related to the determination of key factors involved linked to fundamental interactions, cross-modal effects in different contexts and eating scenarios, as well as studies that utilize unique study design approaches and methodologies.


Book
Catalysis by Metals on Perovskite-Type Oxides
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The acceptance and preference of the sensory properties of foods are among the most important criteria determining food choice. Sensory perception and our response to food products, and finally food choice itself, are affected by a myriad of intrinsic and extrinsic factors. The pressing question is, how do these factors specifically affect our acceptance and preference for foods, both in and of themselves, and in combination in various contexts, both fundamental and applied? In addition, which factors overall play the largest role in how we perceive and behave towards food in daily life? Finally, how can these factors be utilized to affect our preferences and final acceptance of real food and food products from industrial production and beyond for healthier eating? A closer look at trends in research showcasing the influence that these factors and our senses have on our perception and affective response to food products and our food choices is timely. Thus, in this Special Issue collection “Consumer Preferences and Acceptance of Food Products”, we bring together articles which encompass the wide scope of multidisciplinary research in the space related to the determination of key factors involved linked to fundamental interactions, cross-modal effects in different contexts and eating scenarios, as well as studies that utilize unique study design approaches and methodologies.


Book
Iron and Cobalt Catalysts
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Since the turn of the last century when the field of catalysis was born, iron and cobalt have been key players in numerous catalysis processes. These metals, due to their ability to activate CO and CH, haev a major economic impact worldwide. Several industrial processes and synthetic routes use these metals: biomass-to-liquids (BTL), coal-to-liquids (CTL), natural gas-to-liquids (GTL), water-gas-shift, alcohol synthesis, alcohol steam reforming, polymerization processes, cross-coupling reactions, and photocatalyst activated reactions. A vast number of materials are produced from these processes, including oil, lubricants, waxes, diesel and jet fuels, hydrogen (e.g., fuel cell applications), gasoline, rubbers, plastics, alcohols, pharmaceuticals, agrochemicals, feed-stock chemicals, and other alternative materials. However, given the true complexities of the variables involved in these processes, many key mechanistic issues are still not fully defined or understood. This Special Issue of Catalysis will be a collaborative effort to combine current catalysis research on these metals from experimental and theoretical perspectives on both heterogeneous and homogeneous catalysts. We welcome contributions from the catalysis community on catalyst characterization, kinetics, reaction mechanism, reactor development, theoretical modeling, and surface science.

Keywords

Technology: general issues --- polynuclear cobalt complexes --- water oxidation --- artificial photosynthesis --- Fe/Cu catalytic-ceramic-filler --- nitrobenzene compounds wastewater --- pilot-scale test --- biodegradability-improvement --- Fischer–Tropsch synthesis (FTS) --- oxygenates --- iron --- cobalt --- ruthenium --- Anderson-Schulz-Flory (ASF) distribution --- Fischer–Tropsch --- catalyst deactivation --- potassium --- liquid-phase catalytic oxidation --- limonene --- carvone --- zeolitic imidazolate frameworks --- Fischer-Tropsch synthesis --- chain growth --- CO insertion --- kinetic isotope effect --- DFT --- hydrogenation of CO --- iron catalysts --- syngas --- monometallic iron catalysts --- Fischer–Tropsch product distribution --- reaction mechanism --- catalysis --- process synthesis and design --- energy conversion --- iron–cobalt bimetal catalysts --- electrochemical application --- hydrogen evolution --- oxygen evolution --- oxygen reduction --- RWGS --- iron oxides --- CO2 conversion --- gas-switching --- Synthetic natural gas (SNG) --- Cobalt --- Iron --- C2–C4 hydrocarbons --- paraffin ratio --- asymmetric hydrogenation --- homogeneous catalysis --- structural design --- conformational analysis --- NMR spectroscopy --- alumina --- strong metal support interactions --- CO2 hydrogenation --- pressure --- temperature --- cobalt carboxylate --- coating --- autoxidation --- alkyd --- siccative --- polymerization --- manganese --- Fischer–Tropsch synthesis --- modeling --- kinetics --- Co --- Al2O3 --- Pt --- Cd --- In --- Sn --- hydrocarbon selectivity --- synergic effect --- GTL --- additives --- reducibility --- XANES --- mesoporous silica based catalysts --- kinetic studies --- 3-D printed microchannel microreactor --- cobalt–nickel nanoparticles --- cobalt–nickel alloys --- nickel --- HAADF-STEM --- TPR-EXAFS/XANES --- CO hydrogenation --- CSTR --- n/a --- Fischer-Tropsch synthesis (FTS) --- Fischer-Tropsch --- Fischer-Tropsch product distribution --- iron-cobalt bimetal catalysts --- C2-C4 hydrocarbons --- cobalt-nickel nanoparticles --- cobalt-nickel alloys


Book
Iron and Cobalt Catalysts
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Since the turn of the last century when the field of catalysis was born, iron and cobalt have been key players in numerous catalysis processes. These metals, due to their ability to activate CO and CH, haev a major economic impact worldwide. Several industrial processes and synthetic routes use these metals: biomass-to-liquids (BTL), coal-to-liquids (CTL), natural gas-to-liquids (GTL), water-gas-shift, alcohol synthesis, alcohol steam reforming, polymerization processes, cross-coupling reactions, and photocatalyst activated reactions. A vast number of materials are produced from these processes, including oil, lubricants, waxes, diesel and jet fuels, hydrogen (e.g., fuel cell applications), gasoline, rubbers, plastics, alcohols, pharmaceuticals, agrochemicals, feed-stock chemicals, and other alternative materials. However, given the true complexities of the variables involved in these processes, many key mechanistic issues are still not fully defined or understood. This Special Issue of Catalysis will be a collaborative effort to combine current catalysis research on these metals from experimental and theoretical perspectives on both heterogeneous and homogeneous catalysts. We welcome contributions from the catalysis community on catalyst characterization, kinetics, reaction mechanism, reactor development, theoretical modeling, and surface science.

Keywords

polynuclear cobalt complexes --- water oxidation --- artificial photosynthesis --- Fe/Cu catalytic-ceramic-filler --- nitrobenzene compounds wastewater --- pilot-scale test --- biodegradability-improvement --- Fischer–Tropsch synthesis (FTS) --- oxygenates --- iron --- cobalt --- ruthenium --- Anderson-Schulz-Flory (ASF) distribution --- Fischer–Tropsch --- catalyst deactivation --- potassium --- liquid-phase catalytic oxidation --- limonene --- carvone --- zeolitic imidazolate frameworks --- Fischer-Tropsch synthesis --- chain growth --- CO insertion --- kinetic isotope effect --- DFT --- hydrogenation of CO --- iron catalysts --- syngas --- monometallic iron catalysts --- Fischer–Tropsch product distribution --- reaction mechanism --- catalysis --- process synthesis and design --- energy conversion --- iron–cobalt bimetal catalysts --- electrochemical application --- hydrogen evolution --- oxygen evolution --- oxygen reduction --- RWGS --- iron oxides --- CO2 conversion --- gas-switching --- Synthetic natural gas (SNG) --- Cobalt --- Iron --- C2–C4 hydrocarbons --- paraffin ratio --- asymmetric hydrogenation --- homogeneous catalysis --- structural design --- conformational analysis --- NMR spectroscopy --- alumina --- strong metal support interactions --- CO2 hydrogenation --- pressure --- temperature --- cobalt carboxylate --- coating --- autoxidation --- alkyd --- siccative --- polymerization --- manganese --- Fischer–Tropsch synthesis --- modeling --- kinetics --- Co --- Al2O3 --- Pt --- Cd --- In --- Sn --- hydrocarbon selectivity --- synergic effect --- GTL --- additives --- reducibility --- XANES --- mesoporous silica based catalysts --- kinetic studies --- 3-D printed microchannel microreactor --- cobalt–nickel nanoparticles --- cobalt–nickel alloys --- nickel --- HAADF-STEM --- TPR-EXAFS/XANES --- CO hydrogenation --- CSTR --- n/a --- Fischer-Tropsch synthesis (FTS) --- Fischer-Tropsch --- Fischer-Tropsch product distribution --- iron-cobalt bimetal catalysts --- C2-C4 hydrocarbons --- cobalt-nickel nanoparticles --- cobalt-nickel alloys

Listing 1 - 10 of 12 << page
of 2
>>
Sort by