Narrow your search
Listing 1 - 10 of 10
Sort by

Book
Photochemical and Electrochemical Activation Strategies of C(sp3)-Based Building Blocks for Organic Synthesis
Authors: ---
ISBN: 9789819989942 9819989949 Year: 2024 Publisher: Singapore : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book addresses novel C(sp3)-C(sp2) and C(sp3)-heteroatom bond-forming reactions. Two strategies are given in the book using photoredox or electrochemical methods. The first strategy describes that the hydroalkylation of alkynes via photoredox-mediated Ni/Ir dual catalysis produces trisubstituted alkenes as versatile synthetic building blocks for the synthesis of pharmaceutical agents and natural products. High regioselectivity and E/Z-selectivity were achieved by introducing silyl groups that can provide steric and electronic effects to these selectivities with extensive opportunities for post-functionalization. The second strategy enables the development of C(sp3)-heteroatom bond-forming reactions through the electrochemical activation of C(sp3)-B bonds. The bonding of heteroatoms to carbon atoms has been an enduring subject of investigation for organic chemists. The function of most molecules is mainly determined by heteroatoms attached to the carbon atom, although the backbone structure of organic compounds comprises carbon fragments.


Periodical
Catalysts
ISSN: 20734344

Loading...
Export citation

Choose an application

Bookmark

Abstract


Multi
Sol-Gel Synthesis Strategies for Tailored Catalytic Materials
Authors: ---
ISBN: 9783031207235 9783031207228 9783031207242 Year: 2023 Publisher: Cham Springer International Publishing :Imprint: Springer

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book discusses the synthesis of catalytic materials with improved and tailored functionalities via the sol-gel method. Beginning with a general outline of traditional sol-gel chemistry, the book gradually explores surrounding topics, such as the formation of porous structures, while guiding the overall discussion toward the synthesis of heterogeneous catalysts and focusing throughout on the structure-activity relationship in catalytic materials. Featuring several case studies covering major current industrial applications, the book is an ideal guide for researchers looking to tailor catalytic materials for a specific catalytic process and thus exploiting the versatility of the “traditional” sol-gel method.


Book
Handbook of Porous Carbon Materials
Author:
ISBN: 9811971889 9811971870 Year: 2023 Publisher: Singapore : Springer, Springer Nature Singapore Pte Ltd.,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This handbook summarizes the current advancements and growth in sustainable carbonaceous porous materials for fabrication and revival of energy devices, fuel cells, sensors technology, solar cell technology, stealth technology in addition to biomedical applications. It also covers the potential applications of carbon materials in various fields such as chemical, engineering, biomedical and environmental sciences. It also confers the prospective utilization of 2D and 3D hierarchical porous carbon in different interdisciplinary engineering applications. The book discusses major challenges faced in the development of cost-effective future energy storage strategies and provides effective solutions for improvement in the performance of carbon-based materials. Given the content, this handbook will be useful for students, researchers and professionals working in the area of material chemistry and allied fields.


Book
Solid Catalysts for the Upgrading of Renewable Sources
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The use of solid catalysts for the upgrade of renewable sources gives the opportunity to combine the two main cores of green chemistry, that is, on the one hand, the set-up of sustainable processes and, on the other, the use of biomass-derived materials. Solid catalysts have taken on a leading role in traditional petrochemical processes and could represent a key tool in new biorefinery-driven technologies.


Book
Layered Double Hydroxide-Based Catalytic Materials for Sustainable Processes
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Layered double hydroxides (LDHs), also known as two-dimensional anionic clays, as well as the derived materials, including hybrids, nanocomposites, mixed oxides, and supported metals, have been highlighted as outstanding heterogeneous catalysts with unlimited applications in various processes involving both acid–base (addition, alkylation, acylation, decarboxylation, etc.) and redox (oxidation, reduction, dehydrogenation, etc.) mechanisms. This is mainly due to their flexibility in chemical composition, allowing the fine tuning of the nature of the active sites and the control of the balance between them. Additionally, LDHs display a large anion exchange capacity and the possibility to modify their interlayer space, constraining the size and type of reactants entering in the interlamellar space. Furthermore, their easy and economic synthesis, with high levels of purity and efficiency, at both the laboratory and industrial scales, make LDHs and their derived materials excellent solid catalysts. This Special Issue collects original research papers, reviews, and commentaries focused on the catalytic applications of these remarkable materials.


Book
Layered Double Hydroxide-Based Catalytic Materials for Sustainable Processes
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Layered double hydroxides (LDHs), also known as two-dimensional anionic clays, as well as the derived materials, including hybrids, nanocomposites, mixed oxides, and supported metals, have been highlighted as outstanding heterogeneous catalysts with unlimited applications in various processes involving both acid–base (addition, alkylation, acylation, decarboxylation, etc.) and redox (oxidation, reduction, dehydrogenation, etc.) mechanisms. This is mainly due to their flexibility in chemical composition, allowing the fine tuning of the nature of the active sites and the control of the balance between them. Additionally, LDHs display a large anion exchange capacity and the possibility to modify their interlayer space, constraining the size and type of reactants entering in the interlamellar space. Furthermore, their easy and economic synthesis, with high levels of purity and efficiency, at both the laboratory and industrial scales, make LDHs and their derived materials excellent solid catalysts. This Special Issue collects original research papers, reviews, and commentaries focused on the catalytic applications of these remarkable materials.


Book
Solid Catalysts for the Upgrading of Renewable Sources
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The use of solid catalysts for the upgrade of renewable sources gives the opportunity to combine the two main cores of green chemistry, that is, on the one hand, the set-up of sustainable processes and, on the other, the use of biomass-derived materials. Solid catalysts have taken on a leading role in traditional petrochemical processes and could represent a key tool in new biorefinery-driven technologies.


Book
Layered Double Hydroxide-Based Catalytic Materials for Sustainable Processes
Authors: ---
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Layered double hydroxides (LDHs), also known as two-dimensional anionic clays, as well as the derived materials, including hybrids, nanocomposites, mixed oxides, and supported metals, have been highlighted as outstanding heterogeneous catalysts with unlimited applications in various processes involving both acid–base (addition, alkylation, acylation, decarboxylation, etc.) and redox (oxidation, reduction, dehydrogenation, etc.) mechanisms. This is mainly due to their flexibility in chemical composition, allowing the fine tuning of the nature of the active sites and the control of the balance between them. Additionally, LDHs display a large anion exchange capacity and the possibility to modify their interlayer space, constraining the size and type of reactants entering in the interlamellar space. Furthermore, their easy and economic synthesis, with high levels of purity and efficiency, at both the laboratory and industrial scales, make LDHs and their derived materials excellent solid catalysts. This Special Issue collects original research papers, reviews, and commentaries focused on the catalytic applications of these remarkable materials.

Keywords

Research & information: general --- Chemistry --- layered double hydroxides (LDH) --- polyoxometalates (POM) --- catalytic materials --- Michael addition --- cobalt-based LDHs --- ultrasonic irradiation --- synergistic effect --- photocatalysis --- nitrophenol degradation --- Zn,Al-hydrotalcite --- ZnO dispersed on alumina --- reusability --- layered double hydroxide --- LDH --- catalytic oxidation --- ethanol --- toluene --- VOC --- photocatalysts --- Cu electrodes --- diazo dyes --- electrocatalysts --- layer double hydroxides --- photoelectrochemical degradation --- hydrotalcites --- mixed oxides --- aldol condensation --- basic catalysts --- exfoliation --- nanosheets --- oxidation --- layered double hydroxides --- base catalysts --- epoxide --- formaldehyde --- oxidation removal --- BiOCl --- manganese --- biodiesel --- transesterification --- hydrothermal --- nickel --- aluminum --- solid base --- structured catalyst --- ethanol steam reforming --- aluminum lathe waste strips --- Ni nanoparticle --- mechano-chemical/co-precipitation synthesis --- organic alkalis (tetramethylammonium hydroxide) --- memory effect --- Claisen-Schmidt condensation --- self-cyclohexanone condensation --- layered double hydroxides (LDH) --- polyoxometalates (POM) --- catalytic materials --- Michael addition --- cobalt-based LDHs --- ultrasonic irradiation --- synergistic effect --- photocatalysis --- nitrophenol degradation --- Zn,Al-hydrotalcite --- ZnO dispersed on alumina --- reusability --- layered double hydroxide --- LDH --- catalytic oxidation --- ethanol --- toluene --- VOC --- photocatalysts --- Cu electrodes --- diazo dyes --- electrocatalysts --- layer double hydroxides --- photoelectrochemical degradation --- hydrotalcites --- mixed oxides --- aldol condensation --- basic catalysts --- exfoliation --- nanosheets --- oxidation --- layered double hydroxides --- base catalysts --- epoxide --- formaldehyde --- oxidation removal --- BiOCl --- manganese --- biodiesel --- transesterification --- hydrothermal --- nickel --- aluminum --- solid base --- structured catalyst --- ethanol steam reforming --- aluminum lathe waste strips --- Ni nanoparticle --- mechano-chemical/co-precipitation synthesis --- organic alkalis (tetramethylammonium hydroxide) --- memory effect --- Claisen-Schmidt condensation --- self-cyclohexanone condensation


Book
Solid Catalysts for the Upgrading of Renewable Sources
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The use of solid catalysts for the upgrade of renewable sources gives the opportunity to combine the two main cores of green chemistry, that is, on the one hand, the set-up of sustainable processes and, on the other, the use of biomass-derived materials. Solid catalysts have taken on a leading role in traditional petrochemical processes and could represent a key tool in new biorefinery-driven technologies.

Keywords

biorefinery --- lignin --- citronellal --- biofuel production --- calcination temperature --- carbohydrates --- biomass valorization --- liquid phase reductive depolymerization --- terpenoids --- heterogeneous catalysis --- propylene glycol --- transition metals --- transfer hydrogenation --- acidic clays --- phenolic and aromatic compounds --- biofuels --- aqueous phase --- supported metals --- hybrid materials --- amination --- heterogeneous and homogeneous catalysts --- CuZn catalysts --- catalytic materials --- terpenes --- Lewis acids --- surface functional groups --- value-added products --- carbon nanotubes --- ethylene glycol --- biochar-supported metal catalysts --- calcination atmosphere --- xylitol --- alditol --- HMF --- biomass --- metal–organic frameworks (MOFs) --- hydrothermal carbonization --- solid-acid catalyst --- NMR --- solid base catalyst --- catalytic transfer hydrogenation --- surface functionalization --- transesterification --- biomass conversion --- hydrogen donors --- hydrogenolysis --- octahydroacridines --- solid acids --- biorefinery --- lignin --- citronellal --- biofuel production --- calcination temperature --- carbohydrates --- biomass valorization --- liquid phase reductive depolymerization --- terpenoids --- heterogeneous catalysis --- propylene glycol --- transition metals --- transfer hydrogenation --- acidic clays --- phenolic and aromatic compounds --- biofuels --- aqueous phase --- supported metals --- hybrid materials --- amination --- heterogeneous and homogeneous catalysts --- CuZn catalysts --- catalytic materials --- terpenes --- Lewis acids --- surface functional groups --- value-added products --- carbon nanotubes --- ethylene glycol --- biochar-supported metal catalysts --- calcination atmosphere --- xylitol --- alditol --- HMF --- biomass --- metal–organic frameworks (MOFs) --- hydrothermal carbonization --- solid-acid catalyst --- NMR --- solid base catalyst --- catalytic transfer hydrogenation --- surface functionalization --- transesterification --- biomass conversion --- hydrogen donors --- hydrogenolysis --- octahydroacridines --- solid acids

Listing 1 - 10 of 10
Sort by