Listing 1 - 10 of 17 | << page >> |
Sort by
|
Choose an application
Recent advances in microfabrication technologies have enabled the development of entirely new classes of small-scale devices with applications in fields ranging from biomedicine (portable defibrillators, drug delivery systems, etc.), to wireless communication and computing (cell phones, laptop computers, etc.), to reconnaissance (unmanned air vehicles, microsatellites etc.), and to augmentation of human function (exoskeletons etc.). In many cases, however, what these devices can actually accomplish is limited by the low energy density of their energy storage and conversion systems. This breakthrough book brings together in one place the information necessary to develop the high energy density combustion-based power sources that will enable many of these devices to realize their full potentials.
Internal combustion engines --- Combustion --- Microfabrication. --- Manufacturing processes --- Thermochemistry --- Heat --- Smoke --- Combustion. --- Industrial applications. --- microscale combustion --- flameless combustion --- combustion limits --- combustion instability --- excess enthalpy combustion --- small-scale liquid film combustors --- micro-tubes and porous combustors --- Swiss-roll combustors --- catalytic reactors --- micro-heat engines --- micro-reactors --- micro-power generators --- micro-thrusters --- model aircraft engines --- 2-stroke engines --- piston engines --- heterogeneous combustion --- catalytic combustion --- conjugate heat transfer --- scale-effects on combustion --- thermoelectric power generation --- micro gas turbine engine --- micro-rotary engine --- micro-rockets --- microfabrication --- MEMS
Choose an application
The development of porous materials has attracted the attention of the research community for years. Porosity characteristics have specific impacts on the material properties and materials that are applied in many areas, such as pollutant removal, CO2 capture, energy storage, catalytic oxidation and reduction processes, the conversion of biomass to biofuels, and drug delivery. Examples of porous materials are activated carbons, clays, and zeolites. The aim of this book is to collect the recent advances and progress regarding porous materials and their applications in the environmental area.
spherical seeds --- spherical activated carbons --- activation --- microporosity --- mechanical properties --- diatomite --- zeolite X --- hydrothermal method --- calcium ion exchange capacity --- clay minerals particles --- orientational anisotropy --- granular systems --- disk packing --- X-Ray microtomography --- mesoscale simulation --- water produced --- adsorbent materials --- composite --- AlFe-pillared clay --- CrCeOx --- chlorobenzene --- catalytic combustion --- temperature-programmed reaction --- lignite --- porous structure --- carbon dioxide --- pressure --- CuCl/AC adsorbent --- CO adsorption --- monolayer dispersion --- isosteric heat --- adsorption isotherms --- Fischer–Tropsch --- supported iron oxide --- supported cobalt oxide --- reducibility --- dispersion --- biosorption --- weed --- methylene blue dye --- natural biosorbents --- adsorption kinetics
Choose an application
Kinetics and reactor modeling for heterogeneous catalytic reactions are prominent tools for investigating and understanding catalyst functionalities at nanoscale and the related rates of complex reaction networks. This book illustrates some examples related to the transformation of simple to more complex feedstocks, including different types of reactor designs, i.e., steady-state, transient plug flow reactors, and TAP reactors for which there is sometimes a strong gap in the operating conditions from ultra-high-vacuum to high-pressure conditions. In conjunction, new methodologies have emerged, giving rise to more robust microkinetics models. As exemplified, they include the kinetics and the dynamics of the reactors and span a large range of length and time scales. The objective of this Special Issue is to provide contributions that can illustrate recent advances and novel methodologies for elucidating the kinetics of heterogeneous reactions and the necessary multiscale approach for optimizing the reactor design. This book is dedicated to postgraduate and scientific researchers, and experts in heterogeneous catalysis. It may also serve as a source of original information for the elaboration of lessons on catalysis for Master students.
microkinetics --- n/a --- internal effectiveness factor --- FTIR spectroscopy --- automation --- power-law --- AEIR method --- promoter --- TAP reactor --- rhodium --- Temkin model --- mechanism analysis --- H2S --- N2O --- catalytic decomposition --- cracking --- 1 --- 2 --- methanol-to-olefins (MTO) --- zeolite --- ZSM-23 --- kinetic model --- pilot-scale fixed-bed reactor --- methane --- effective diffusion coefficient --- SAPO-18 --- kinetics --- alkali metal --- ZSM-5 --- digitalization --- gas-phase oxidation --- kinetic modeling --- temporal analysis of products --- selective oxidation --- Methyl Ethyl Ketone --- amorphous calcium phosphate --- reactor modeling --- HNO3 --- 3-Butadiene --- transient kinetics --- catalytic combustion --- cobalt mixed oxide --- 3-Butanediol dehydration --- ammonia decomposition --- heats of adsorption --- Pd/?-Al2O3 --- SAPO-34 --- Langmuir–Hinshelwood --- hierarchical graphite felts
Choose an application
The recent developments in the environmental applications of heterogenous catalysis and photocatalysis are described in this book, focusing on air and water purification using innovative and performing catalysts and applying new green and sustainable processes.
Technology: general issues --- Chemical engineering --- ceria --- pesticide --- photocatalysis --- photo-Fenton --- AOPs --- thin films --- ZnO --- doping --- heterogeneous photocatalysis --- VOCs --- bimetallic catalysts --- air purification --- catalytic combustion --- China --- elimination technology --- pharmaceutical industry --- advanced oxidation processes --- ozone --- ultraviolet --- bleaching --- fabrics --- industrial wastewater --- zero valent iron --- magnetite --- hematite --- alkali-activated material --- geopolymer --- blast furnace slag --- catalytic wet peroxide oxidation --- Fe-catalyst --- bisphenol A --- Mn-Zr solid solution --- toluene --- active oxygen --- combustion --- VOC --- photothermo catalysis --- ethanol --- manganese oxide --- zirconium oxide --- hydrothermal preparation --- co-precipitation --- CuFeS2 --- Fenton-like reaction --- degradation --- environmental water samples --- ciprofloxacin --- levofloxacin --- gC3N4 --- rGO --- Au nanoparticles --- n/a
Choose an application
Since the first works introducing the aluminum intercalated clay family in the early 1970s, interest in the synthesis of Pillared InterLayered Clays (PILC) has increased tremendously, especially research into their properties and energetic and environmental applications. After our comprehensive reviews and book on the synthesis and catalytic applications of these materials, new references have appeared in the literature and the interest in this field is continuously increasing. The aim of this Special Issue is to collect the recent advances developed considering this family of solids.
Technology: general issues --- clays --- Al-PILC --- pillared clays --- scale up --- pillaring solution --- Keggin ion --- reutilization --- Keggin polycation --- concentrated media --- microwave radiation --- pillared montmorillonite --- AlNi-PILC --- Pd-Ce --- catalytic combustion --- benzene --- TPD/TPSR --- ZnO-TiO2/delaminated montmorillonite --- heterostructures --- Ag-coating --- solar photocatalytic activity --- water purification --- cadmium --- chitosan --- modification --- 13X molecular sieve --- removal --- dye remediation --- adsorption --- azo dye --- wastewater --- pillared porous phosphate heterostructures --- isotherm --- sericite --- thermal modification --- acid activation --- sodium modification --- montmorillonite/hydrotalcite composite --- montmorillonite/titania composite --- organoclay --- inverse micelle --- Mn-Al mixed oxide --- combustion catalysts --- ciprofloxacin --- smectite --- pillared clay --- keggin-like mixed Al/Fe polyoxocation --- mineralogical composition --- catalytic wet peroxide oxidation --- mesosilica --- methyl orange --- palygorskite
Choose an application
The development of porous materials has attracted the attention of the research community for years. Porosity characteristics have specific impacts on the material properties and materials that are applied in many areas, such as pollutant removal, CO2 capture, energy storage, catalytic oxidation and reduction processes, the conversion of biomass to biofuels, and drug delivery. Examples of porous materials are activated carbons, clays, and zeolites. The aim of this book is to collect the recent advances and progress regarding porous materials and their applications in the environmental area.
Technology: general issues --- spherical seeds --- spherical activated carbons --- activation --- microporosity --- mechanical properties --- diatomite --- zeolite X --- hydrothermal method --- calcium ion exchange capacity --- clay minerals particles --- orientational anisotropy --- granular systems --- disk packing --- X-Ray microtomography --- mesoscale simulation --- water produced --- adsorbent materials --- composite --- AlFe-pillared clay --- CrCeOx --- chlorobenzene --- catalytic combustion --- temperature-programmed reaction --- lignite --- porous structure --- carbon dioxide --- pressure --- CuCl/AC adsorbent --- CO adsorption --- monolayer dispersion --- isosteric heat --- adsorption isotherms --- Fischer–Tropsch --- supported iron oxide --- supported cobalt oxide --- reducibility --- dispersion --- biosorption --- weed --- methylene blue dye --- natural biosorbents --- adsorption kinetics
Choose an application
Since the first works introducing the aluminum intercalated clay family in the early 1970s, interest in the synthesis of Pillared InterLayered Clays (PILC) has increased tremendously, especially research into their properties and energetic and environmental applications. After our comprehensive reviews and book on the synthesis and catalytic applications of these materials, new references have appeared in the literature and the interest in this field is continuously increasing. The aim of this Special Issue is to collect the recent advances developed considering this family of solids.
clays --- Al-PILC --- pillared clays --- scale up --- pillaring solution --- Keggin ion --- reutilization --- Keggin polycation --- concentrated media --- microwave radiation --- pillared montmorillonite --- AlNi-PILC --- Pd-Ce --- catalytic combustion --- benzene --- TPD/TPSR --- ZnO-TiO2/delaminated montmorillonite --- heterostructures --- Ag-coating --- solar photocatalytic activity --- water purification --- cadmium --- chitosan --- modification --- 13X molecular sieve --- removal --- dye remediation --- adsorption --- azo dye --- wastewater --- pillared porous phosphate heterostructures --- isotherm --- sericite --- thermal modification --- acid activation --- sodium modification --- montmorillonite/hydrotalcite composite --- montmorillonite/titania composite --- organoclay --- inverse micelle --- Mn-Al mixed oxide --- combustion catalysts --- ciprofloxacin --- smectite --- pillared clay --- keggin-like mixed Al/Fe polyoxocation --- mineralogical composition --- catalytic wet peroxide oxidation --- mesosilica --- methyl orange --- palygorskite
Choose an application
The recent developments in the environmental applications of heterogenous catalysis and photocatalysis are described in this book, focusing on air and water purification using innovative and performing catalysts and applying new green and sustainable processes.
ceria --- pesticide --- photocatalysis --- photo-Fenton --- AOPs --- thin films --- ZnO --- doping --- heterogeneous photocatalysis --- VOCs --- bimetallic catalysts --- air purification --- catalytic combustion --- China --- elimination technology --- pharmaceutical industry --- advanced oxidation processes --- ozone --- ultraviolet --- bleaching --- fabrics --- industrial wastewater --- zero valent iron --- magnetite --- hematite --- alkali-activated material --- geopolymer --- blast furnace slag --- catalytic wet peroxide oxidation --- Fe-catalyst --- bisphenol A --- Mn-Zr solid solution --- toluene --- active oxygen --- combustion --- VOC --- photothermo catalysis --- ethanol --- manganese oxide --- zirconium oxide --- hydrothermal preparation --- co-precipitation --- CuFeS2 --- Fenton-like reaction --- degradation --- environmental water samples --- ciprofloxacin --- levofloxacin --- gC3N4 --- rGO --- Au nanoparticles --- n/a
Choose an application
This highly informative and carefully presented book discusses the preparation, processing, characterization and applications of different types of nanoenergetic materials, as well as the tailoring of their properties. It gives an overview of recent advances of outstanding classes of energetic materials applied in the fields of physics, chemistry, aerospace, defense, and materials science, among others. The content of this book is relevant to researchers in academia and industry professionals working on the development of advanced nanoenergetic materials and their applications.
History of engineering & technology --- solid propellants --- condensed products --- catalytic combustion --- compositions --- rocket motor --- thermolysis --- energetic materials --- GO-based catalysts --- quantitative analyses --- decomposition mechanisms --- electrospinning --- NC/GAP/nano-LLM-105 --- energetic performance --- sensitivity --- nitrocellulose --- supercritical antisolvent process --- nanoparticles --- combustion --- nano AP --- nano AN --- liquid nitrogen --- freeze drying --- nanoenergetic material --- compatibility --- nonisothermal reaction kinetics --- thermal safety --- catalytic action --- nano-Al/MoO3 MIC --- stable suspension --- electrophoretic deposition --- kinetics --- micro initiator --- carbon mesosphere --- Fe2O3 --- supported nanoparticles --- thermal decomposition --- composite energetic materials --- nano-sized particles --- Al-based --- morphology performance --- hazardous properties --- ignition --- metal --- combustion mode --- heat transfer --- free-molecular --- burning time --- nanothermite --- pyroMEMS --- nanoenergetics --- reactive thin film --- Al --- CuO --- aging --- initiation --- HTPB --- aluminum nanopowders --- burning rate --- coated aluminum --- reactive materials --- nanocomposite --- metal combustion --- thermal analysis --- solid propellants --- condensed products --- catalytic combustion --- compositions --- rocket motor --- thermolysis --- energetic materials --- GO-based catalysts --- quantitative analyses --- decomposition mechanisms --- electrospinning --- NC/GAP/nano-LLM-105 --- energetic performance --- sensitivity --- nitrocellulose --- supercritical antisolvent process --- nanoparticles --- combustion --- nano AP --- nano AN --- liquid nitrogen --- freeze drying --- nanoenergetic material --- compatibility --- nonisothermal reaction kinetics --- thermal safety --- catalytic action --- nano-Al/MoO3 MIC --- stable suspension --- electrophoretic deposition --- kinetics --- micro initiator --- carbon mesosphere --- Fe2O3 --- supported nanoparticles --- thermal decomposition --- composite energetic materials --- nano-sized particles --- Al-based --- morphology performance --- hazardous properties --- ignition --- metal --- combustion mode --- heat transfer --- free-molecular --- burning time --- nanothermite --- pyroMEMS --- nanoenergetics --- reactive thin film --- Al --- CuO --- aging --- initiation --- HTPB --- aluminum nanopowders --- burning rate --- coated aluminum --- reactive materials --- nanocomposite --- metal combustion --- thermal analysis
Choose an application
The recent developments in the environmental applications of heterogenous catalysis and photocatalysis are described in this book, focusing on air and water purification using innovative and performing catalysts and applying new green and sustainable processes.
Technology: general issues --- Chemical engineering --- ceria --- pesticide --- photocatalysis --- photo-Fenton --- AOPs --- thin films --- ZnO --- doping --- heterogeneous photocatalysis --- VOCs --- bimetallic catalysts --- air purification --- catalytic combustion --- China --- elimination technology --- pharmaceutical industry --- advanced oxidation processes --- ozone --- ultraviolet --- bleaching --- fabrics --- industrial wastewater --- zero valent iron --- magnetite --- hematite --- alkali-activated material --- geopolymer --- blast furnace slag --- catalytic wet peroxide oxidation --- Fe-catalyst --- bisphenol A --- Mn-Zr solid solution --- toluene --- active oxygen --- combustion --- VOC --- photothermo catalysis --- ethanol --- manganese oxide --- zirconium oxide --- hydrothermal preparation --- co-precipitation --- CuFeS2 --- Fenton-like reaction --- degradation --- environmental water samples --- ciprofloxacin --- levofloxacin --- gC3N4 --- rGO --- Au nanoparticles --- ceria --- pesticide --- photocatalysis --- photo-Fenton --- AOPs --- thin films --- ZnO --- doping --- heterogeneous photocatalysis --- VOCs --- bimetallic catalysts --- air purification --- catalytic combustion --- China --- elimination technology --- pharmaceutical industry --- advanced oxidation processes --- ozone --- ultraviolet --- bleaching --- fabrics --- industrial wastewater --- zero valent iron --- magnetite --- hematite --- alkali-activated material --- geopolymer --- blast furnace slag --- catalytic wet peroxide oxidation --- Fe-catalyst --- bisphenol A --- Mn-Zr solid solution --- toluene --- active oxygen --- combustion --- VOC --- photothermo catalysis --- ethanol --- manganese oxide --- zirconium oxide --- hydrothermal preparation --- co-precipitation --- CuFeS2 --- Fenton-like reaction --- degradation --- environmental water samples --- ciprofloxacin --- levofloxacin --- gC3N4 --- rGO --- Au nanoparticles
Listing 1 - 10 of 17 | << page >> |
Sort by
|