Narrow your search

Library

FARO (5)

KU Leuven (5)

LUCA School of Arts (5)

Odisee (5)

Thomas More Kempen (5)

Thomas More Mechelen (5)

UCLL (5)

ULiège (5)

VIVES (5)

Vlaams Parlement (5)

More...

Resource type

book (13)


Language

English (13)


Year
From To Submit

2021 (5)

2020 (5)

2017 (3)

Listing 1 - 10 of 13 << page
of 2
>>
Sort by

Book
Mitochondria: Hubs of Cellular Signaling, Energetics and Redox Balance
Authors: ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Poised at the convergence of most catabolic and anabolic pathways, mitochondria are the center of heterotrophic aerobic life, representing a hub in the overall metabolic network of cells. The energetic functions performed by mitochondria face the unavoidable redox hurdle of handling huge amounts of oxygen while keeping its own as well as the cellular redox environment under control. Reactive oxygen species (ROS) are produced in the respiratory chain as a result of the energy supplying function of mitochondria. Originally considered an unavoidable by-product of oxidative phosphorylation, ROS have become crucial signaling molecules when their levels are kept within physiological range. This occurs when their production and scavenging are balanced within mitochondria and cells. Mitochondria-generated hydrogen peroxide can act as a signaling molecule within mitochondria or in the cytoplasm, affecting multiple networks that control, for example, cell cycle, stress response, cell migration and adhesion, energy metabolism, redox balance, cell contraction, and ion channels. However, under pathophysiological conditions, excessive ROS levels can happen due to either overproduction, overwhelming of antioxidant defenses, or both. Under oxidative stress, detrimental effects of ROS include oxidation of protein, lipids, and nucleic acids; mitochondrial depolarization and calcium overload; and cell-wide oscillations mediated by ROS-induced ROS release mechanisms. Mitochondrial dysfunction is central in the pathogenesis of numerous human maladies including cardiomyopathies and neurodegeneration. Diseases characterized by altered nutrient metabolism, such as diabetes and cancer, exhibit elevated ROS levels. These may contribute to pathogenesis by increasing DNA mutation, affecting regulatory signaling and transcription, and promoting inflammation. Under metabolic stress, several ionic channels present in the inner and outer mitochondrial membranes can have pro-life and -death effects. In the present E-book, based on the Frontiers Research Topic entitled: "Mitochondria: Hubs of cellular signaling, energetics and redox balance", we address one of the fundamental questions that the field of ROS biology faces today: how do mitochondria accomplish a reliable energy provision and at the same time keep ROS levels within physiological, non-harming, limits but crucial for cellular signaling function? Additionally, and within the perspective of mitochondria as signaling-energetic hubs in the extensive cellular metabolic network, we ask how can their collective dynamics scale from the subcellular to the cellular, tissue and organ levels to affect function in health and disease.


Book
Mitochondria: Hubs of Cellular Signaling, Energetics and Redox Balance
Authors: ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Poised at the convergence of most catabolic and anabolic pathways, mitochondria are the center of heterotrophic aerobic life, representing a hub in the overall metabolic network of cells. The energetic functions performed by mitochondria face the unavoidable redox hurdle of handling huge amounts of oxygen while keeping its own as well as the cellular redox environment under control. Reactive oxygen species (ROS) are produced in the respiratory chain as a result of the energy supplying function of mitochondria. Originally considered an unavoidable by-product of oxidative phosphorylation, ROS have become crucial signaling molecules when their levels are kept within physiological range. This occurs when their production and scavenging are balanced within mitochondria and cells. Mitochondria-generated hydrogen peroxide can act as a signaling molecule within mitochondria or in the cytoplasm, affecting multiple networks that control, for example, cell cycle, stress response, cell migration and adhesion, energy metabolism, redox balance, cell contraction, and ion channels. However, under pathophysiological conditions, excessive ROS levels can happen due to either overproduction, overwhelming of antioxidant defenses, or both. Under oxidative stress, detrimental effects of ROS include oxidation of protein, lipids, and nucleic acids; mitochondrial depolarization and calcium overload; and cell-wide oscillations mediated by ROS-induced ROS release mechanisms. Mitochondrial dysfunction is central in the pathogenesis of numerous human maladies including cardiomyopathies and neurodegeneration. Diseases characterized by altered nutrient metabolism, such as diabetes and cancer, exhibit elevated ROS levels. These may contribute to pathogenesis by increasing DNA mutation, affecting regulatory signaling and transcription, and promoting inflammation. Under metabolic stress, several ionic channels present in the inner and outer mitochondrial membranes can have pro-life and -death effects. In the present E-book, based on the Frontiers Research Topic entitled: "Mitochondria: Hubs of cellular signaling, energetics and redox balance", we address one of the fundamental questions that the field of ROS biology faces today: how do mitochondria accomplish a reliable energy provision and at the same time keep ROS levels within physiological, non-harming, limits but crucial for cellular signaling function? Additionally, and within the perspective of mitochondria as signaling-energetic hubs in the extensive cellular metabolic network, we ask how can their collective dynamics scale from the subcellular to the cellular, tissue and organ levels to affect function in health and disease.


Book
Mitochondria: Hubs of Cellular Signaling, Energetics and Redox Balance
Authors: ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Poised at the convergence of most catabolic and anabolic pathways, mitochondria are the center of heterotrophic aerobic life, representing a hub in the overall metabolic network of cells. The energetic functions performed by mitochondria face the unavoidable redox hurdle of handling huge amounts of oxygen while keeping its own as well as the cellular redox environment under control. Reactive oxygen species (ROS) are produced in the respiratory chain as a result of the energy supplying function of mitochondria. Originally considered an unavoidable by-product of oxidative phosphorylation, ROS have become crucial signaling molecules when their levels are kept within physiological range. This occurs when their production and scavenging are balanced within mitochondria and cells. Mitochondria-generated hydrogen peroxide can act as a signaling molecule within mitochondria or in the cytoplasm, affecting multiple networks that control, for example, cell cycle, stress response, cell migration and adhesion, energy metabolism, redox balance, cell contraction, and ion channels. However, under pathophysiological conditions, excessive ROS levels can happen due to either overproduction, overwhelming of antioxidant defenses, or both. Under oxidative stress, detrimental effects of ROS include oxidation of protein, lipids, and nucleic acids; mitochondrial depolarization and calcium overload; and cell-wide oscillations mediated by ROS-induced ROS release mechanisms. Mitochondrial dysfunction is central in the pathogenesis of numerous human maladies including cardiomyopathies and neurodegeneration. Diseases characterized by altered nutrient metabolism, such as diabetes and cancer, exhibit elevated ROS levels. These may contribute to pathogenesis by increasing DNA mutation, affecting regulatory signaling and transcription, and promoting inflammation. Under metabolic stress, several ionic channels present in the inner and outer mitochondrial membranes can have pro-life and -death effects. In the present E-book, based on the Frontiers Research Topic entitled: "Mitochondria: Hubs of cellular signaling, energetics and redox balance", we address one of the fundamental questions that the field of ROS biology faces today: how do mitochondria accomplish a reliable energy provision and at the same time keep ROS levels within physiological, non-harming, limits but crucial for cellular signaling function? Additionally, and within the perspective of mitochondria as signaling-energetic hubs in the extensive cellular metabolic network, we ask how can their collective dynamics scale from the subcellular to the cellular, tissue and organ levels to affect function in health and disease.


Book
Sphingolipids : From Pathology to Therapeutic Perspectives - A Themed Honorary Issue to Prof. Lina Obeid
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Although sphingolipids are ubiquitous components of cellular membranes, their abundance in cells is generally lower than glycerolipids or cholesterol, representing less than 20% of total lipid mass. Following their discovery in the brain—which contains the largest amounts of sphingolipids in the body—and first description in 1884 by J.L.W. Thudichum, sphingolipids have been overlooked for almost a century, perhaps due to their complexity and enigmatic nature. When sphingolipidoses were discovered, a series of inherited diseases caused by enzyme mutations involved in sphingolipid degradation returned to the limelight. The essential breakthrough came decades later, in the 1990s, with the discovery that sphingolipids were not just structural elements of cellular membranes but intra- and extracellular signaling molecules. It turned out that their lipid backbones, including ceramide and sphingosine-1-phosphate, had selective physiological functions. Thus, sphingolipids emerged as essential players in several pathologies including cancer, diabetes, neurodegenerative disorders, and autoimmune diseases. The present volume reflects upon the unexpectedly eclectic functions of sphingolipids in health, disease, and therapy. This fascinating lipid class will continue to be the subject of up-and-coming future discoveries, especially with regard to new therapeutic strategies.

Keywords

S1P receptor --- inflammation --- S1P transporter --- spinster homolog 2 --- barrier dysfunction --- anxiety --- depression --- sphingolipids --- sphingomyelinase --- ceramidase --- Smpd1 --- acid sphingomyelinase --- forebrain --- depressive-like behavior --- anxiety-like behavior --- ceramide --- ceramides --- ceramidases --- neurodegenerative diseases --- infectious diseases --- sphingosine 1-phoshate --- sphingosine 1-phosphate receptor --- S1P1–5 --- sphingosine 1-phosphate metabolism --- sphingosine 1-phosphate antagonistst/inhibitors --- sphingosine 1-phosphate signaling --- stroke --- multiple sclerosis --- neurodegeneration --- fingolimod --- Sphingosine-1-phosphate --- obesity --- type 2 diabetes --- insulin resistance --- pancreatic β cell fate --- hypothalamus --- sphingosine-1-phosphate --- ischemia/reperfusion --- cardioprotection --- vasoconstriction --- coronary flow --- myocardial function --- myocardial infarct --- albumin --- type 1 diabetes --- beta-cells --- islets --- insulin --- cytokines --- S1P --- animal models --- cystic fibrosis --- autophagy --- myriocin --- Aspergillus fumigatus --- CLN3 disease --- Cln3Δex7/8 mice --- flupirtine --- allyl carbamate derivative --- apoptosis --- cancer --- gangliosides --- immunotherapy --- metastasis --- phenotype switching --- sphingosine 1-phosphate --- Sphingosine 1-phosphate (S1P) --- S1P-lyase (SGPL1) --- tau --- calcium --- histone acetylation --- hippocampus --- cortex --- astrocytes --- neurons --- sphingosine kinase --- G-protein-coupled receptors --- Gαq/11 --- n/a --- sphingosine kinase 1 --- SK1 --- microRNA --- transcription factor --- hypoxia --- long non-coding RNA --- S1P1-5


Book
Mitochondria in Health and Diseases
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Mitochondria are subcellular organelles evolved by the endosymbiosis of bacteria with eukaryotic cells. They are the main source of ATP in the cell and engaged in other aspects of cell metabolism and cell function, including the regulation of ion homeostasis, cell growth, redox status, and cell signaling. Due to their central role in cell life and death, mitochondria are also involved in the pathogenesis and progression of human diseases/conditions, including neurodegenerative and cardiovascular disorders, cancer, diabetes, inflammation, and aging. However, despite the increasing number of studies, precise mechanisms whereby mitochondria are involved in the regulation of basic physiological functions, as well as their role in the cell under pathophysiological conditions, remain unknown. A lack of in-depth knowledge of the regulatory mechanisms of mitochondrial metabolism and function, as well as interplay between the factors that transform the organelle from its role in pro-survival to pro-death, have hindered the development of new mitochondria-targeted pharmacological and conditional approaches for the treatment of human diseases. This book highlights the latest achievements in elucidating the role of mitochondria under physiological conditions, in various cell/animal models of human diseases, and in patients.

Keywords

Medicine --- hypoglycemia --- sodium dichloroacetate --- pyruvate dehydrogenase kinase --- pyruvate dehydrogenase --- oxidative stress --- neuron death --- cholangiocellular carcinoma --- mitochondria --- energy metabolism --- oxidative phosphorylation --- 4-HNE --- DRP1 --- ERK1/2 --- hippocampus --- JNK --- mitochondrial dynamics --- PKA --- protein phosphatases --- TUNEL --- DDE --- high-fat diet --- mitochondrial UCP2 --- ROS --- antioxidant system --- uncoupling protein --- mitochondria: energy metabolism --- lipid handling --- fatty acid oxidation --- potassium channel --- reactive oxygen species --- antioxidants --- life span --- aging --- BKCa channels --- pravastatin --- gemfibrozil --- liver --- colon --- mitochondrial function --- cyclosporin A --- mitochondria calcium buffering --- mitochondria bioenergetics --- mitochondria permeability transition pore --- inorganic phosphate --- hepatic fibrogenesis --- HtrA2/Omi --- reactive oxygen species stress --- mitochondrial homeostasis --- complex I (CI) deficiency --- metabolome and proteome profiling --- reactive oxygen species (ROS) --- respirasome assembly --- electron tunneling (ET) --- perilipin 5 --- lipid droplet --- H9c2 cardiomyoblasts --- adenine nucleotide translocase --- respiratory supercomplexes --- ETC complexes --- dentate granule cell --- epilepsy --- hyperforin --- LONP1 --- neuroprotection --- pilocarpine --- seizure --- siRNA --- cardioprotection --- mitochondrial permeability transition pores --- mitochondrial connexin 43 --- cardiolipin --- iron overload --- hepcidin --- transferrin --- ferritin --- ZIP --- inflammation --- mtDNA --- mitochondrial dysfunction --- muscle aging --- physical performance --- LHON --- Siberian population --- ancient mutation --- specific genetic background --- apoptosis --- human amniotic membrane --- mitochondrial cell death --- BAX --- BCL-2 --- tensile strength --- mitochondrial gene expression --- mtDNA transcription --- mtRNA --- post-transcriptional mtRNA processing --- dsRNA --- innate immunity --- interferon response --- amino acid neurotransmitter --- cerebellar amino acid metabolism --- hypoxia --- 2-oxoglutarate dehydrogenase --- tricarboxylic acid cycle --- heart --- cytoskeletal proteins --- mitochondrial interactions --- plectin --- tubulin beta --- signaling --- GW9662 --- ischemia reperfusion injury --- Langendorff --- myocardial --- pioglitazone --- redox state --- rosiglitazone --- TZD --- uncoupling --- ADP/ATP carrier --- KmADP --- dextran --- morphology --- cardiomyocytes --- telomere length --- telomerase activity --- development --- regeneration --- intranuclear mitochondria --- healthy cells --- electron and confocal microscopy --- signaling pathways --- ion homeostasis --- human diseases


Book
Sphingolipids : From Pathology to Therapeutic Perspectives - A Themed Honorary Issue to Prof. Lina Obeid
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Although sphingolipids are ubiquitous components of cellular membranes, their abundance in cells is generally lower than glycerolipids or cholesterol, representing less than 20% of total lipid mass. Following their discovery in the brain—which contains the largest amounts of sphingolipids in the body—and first description in 1884 by J.L.W. Thudichum, sphingolipids have been overlooked for almost a century, perhaps due to their complexity and enigmatic nature. When sphingolipidoses were discovered, a series of inherited diseases caused by enzyme mutations involved in sphingolipid degradation returned to the limelight. The essential breakthrough came decades later, in the 1990s, with the discovery that sphingolipids were not just structural elements of cellular membranes but intra- and extracellular signaling molecules. It turned out that their lipid backbones, including ceramide and sphingosine-1-phosphate, had selective physiological functions. Thus, sphingolipids emerged as essential players in several pathologies including cancer, diabetes, neurodegenerative disorders, and autoimmune diseases. The present volume reflects upon the unexpectedly eclectic functions of sphingolipids in health, disease, and therapy. This fascinating lipid class will continue to be the subject of up-and-coming future discoveries, especially with regard to new therapeutic strategies.

Keywords

Research & information: general --- Biology, life sciences --- S1P receptor --- inflammation --- S1P transporter --- spinster homolog 2 --- barrier dysfunction --- anxiety --- depression --- sphingolipids --- sphingomyelinase --- ceramidase --- Smpd1 --- acid sphingomyelinase --- forebrain --- depressive-like behavior --- anxiety-like behavior --- ceramide --- ceramides --- ceramidases --- neurodegenerative diseases --- infectious diseases --- sphingosine 1-phoshate --- sphingosine 1-phosphate receptor --- S1P1–5 --- sphingosine 1-phosphate metabolism --- sphingosine 1-phosphate antagonistst/inhibitors --- sphingosine 1-phosphate signaling --- stroke --- multiple sclerosis --- neurodegeneration --- fingolimod --- Sphingosine-1-phosphate --- obesity --- type 2 diabetes --- insulin resistance --- pancreatic β cell fate --- hypothalamus --- sphingosine-1-phosphate --- ischemia/reperfusion --- cardioprotection --- vasoconstriction --- coronary flow --- myocardial function --- myocardial infarct --- albumin --- type 1 diabetes --- beta-cells --- islets --- insulin --- cytokines --- S1P --- animal models --- cystic fibrosis --- autophagy --- myriocin --- Aspergillus fumigatus --- CLN3 disease --- Cln3Δex7/8 mice --- flupirtine --- allyl carbamate derivative --- apoptosis --- cancer --- gangliosides --- immunotherapy --- metastasis --- phenotype switching --- sphingosine 1-phosphate --- Sphingosine 1-phosphate (S1P) --- S1P-lyase (SGPL1) --- tau --- calcium --- histone acetylation --- hippocampus --- cortex --- astrocytes --- neurons --- sphingosine kinase --- G-protein-coupled receptors --- Gαq/11 --- n/a --- sphingosine kinase 1 --- SK1 --- microRNA --- transcription factor --- hypoxia --- long non-coding RNA --- S1P1-5


Book
Antioxidants in Foods
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Antioxidants in food have a dual role; on the one hand, they preserve the quality and shelf life of food products; on the other hand, they function as an external aid, helping to defend our living cells from the threat of oxidative stress. Therefore, foods rich in antioxidants are a useful tool to reduce morbidity and prevent degenerative diseases. Consequently, research related to antioxidants is continually growing. This book brings together 21 articles regarding the latest advances in the most relevant fields of food antioxidant research; from the identification and characterization of new active components, to their molecular mechanisms and the scientific evidence of their clinical use and effectiveness.

Keywords

Research & information: general --- Biology, life sciences --- Food & society --- green tea extract --- food processing --- tannase --- ultrasound --- antioxidant activity --- liver injury --- acclimatisation --- antioxidant defences --- chlorophyll fluorescence --- in vitro culture --- peroxidase --- stevia plants --- 7S basic globulins --- anti-inflammatory protein --- antioxidant protein --- cytokines --- glutathione --- iNOS --- nitric oxide --- oxidative stress --- sweet lupins group --- home-cooking --- extra virgin olive oil --- UPLC-ESI-QqQ-MS/MS --- healthy cooking --- Mediterranean diet --- phenolic compounds --- bioactive compounds --- functional pasta --- gluten-free pasta --- bioaccessibility --- bioavailability --- whole grain --- composite flour --- legumes --- food by-products --- avocados (Persea americana Mill.) --- low temperatures --- plastochromanol-8 --- tocotrienols --- tocopherols --- tocochromanols --- kombucha --- tea --- fermentation --- antioxidant --- flavonoids --- polyphenols --- ascorbic acid --- chlorophyll and carotenoid content --- biodiversity --- Capsicum annuum L. --- β-carotene --- statistical analysis --- rye bread --- microencapsulation --- phenolics --- in vitro relative bioaccessibility --- lipoxygenase --- cyclooxygenase --- acetylcholinesterase --- biological activity --- lycopene --- antioxidants --- cancer --- diabetes --- cardiovascular diseases --- skin disorders --- free radicals --- spectrophotometer --- limitations --- chemical reactions --- colorimetry --- anthraquinone --- free radical scavenging --- inflammatory cytokines --- apoptosis --- Rumex crispus --- skins --- seeds --- Vitis vinifera --- cyclic voltammetry --- anthocyanin metabolites --- cardioprotection --- hepatoprotection --- nephroprotection --- neuroprotection --- antioxidant peptides --- element of pork carcasses --- spectrometric analysis --- ascorbate --- ascorbate–glutathione cycle --- capsaicin --- catalase --- dihydrocapsaicin --- NADP-dehydrogenases --- superoxide dismutase --- red cabbage --- in vitro gastrointestinal digestion --- acid-resistant capsule --- UHPLC-Q-Orbitrap HRMS --- apples --- reducing and chelating capacity --- HPLC–DAD–MS/MS --- Dillenia indica --- heme oxygenase 1 (HO-1) --- nuclear factor erythroid 2-related factor 2 (Nrf2) --- RAW 264.7 cells --- apo-carotenals --- bone --- osteoclasts --- NFκB --- synergy --- n/a --- ascorbate-glutathione cycle --- HPLC-DAD-MS/MS


Book
Stem Cell Research on Cardiology
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Even today, cardiovascular diseases are the main cause of death worldwide, and therapeutic approaches are very restricted. Due to the limited regenerative capabilities of terminally differentiated cardiomyocytes post injury, new strategies to treat cardiac patients are urgently needed. Post myocardial injury, resident fibroblasts begin to generate the extracellular matrix, resulting in fibrosis, and finally, cardiac failure. Recently, preclinical investigations and clinical trials raised hope in stem cell-based approaches, to be an effective therapy option for these diseases. So far, several types of stem cells have been identified to be promising candidates to be applied for treatment: cardiac progenitor cells, bone marrow derived stem cells, embryonic and induced pluripotent stem cells, as well as their descendants. Furthermore, the innovative techniques of direct cardiac reprogramming of cells offered promising options for cardiovascular research, in vitro and in vivo. Hereby, the investigation of underlying and associated mechanisms triggering the therapeutic effects of stem cell application is of particular importance to improve approaches for heart patients. This Special Issue of Cells provides the latest update in the rapidly developing field of regenerative medicine in cardiology.

Keywords

Research & information: general --- Biology, life sciences --- Fabry disease --- human embryonic stem cells --- CRISPR/Cas9 genomic editing --- Mass spectrometry proteomic analysis --- hypertrophic cardiomyopathy --- disease model --- physical exercise --- cardiac cellular regeneration --- microRNA (miR) --- Akt signaling --- cardiomyocyte proliferation --- cardiac hypertrophy --- cardioprotection --- myocarditis --- inflammation --- leukocytes --- cardiomyocytes --- multi-electrode-array --- micro-electrode-array --- MEA --- drug/toxicity screening --- field potential --- arrhythmia --- electrocardiography --- cardiac regeneration --- stem cells --- iPSC --- PSC --- ESC --- cardiovascular disease --- regeneration --- cardiac progenitor cells --- induced pluripotent stem cells --- transdifferentiation --- direct reprogramming --- genetic engineering --- cardiac tissue engineering --- biomaterials --- 18F-FDG PET --- cardiac induced cells --- cardiac function --- non-invasive imaging --- human pluripotent stem cell --- ventricular --- maturation --- bone marrow stem cells --- angiogenesis --- myocardial infarction --- human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) --- iPS cells --- big conductance calcium activated potassium channel (BK) --- Maxi-K --- slo1 --- KCa1.1 --- iberiotoxin --- long QT syndrome --- mesenchymal stromal cells (MSC) --- mRNA --- miRNA --- cardiac reprogramming --- cardiac differentiation --- cardiovascular diseases --- adult stem cells --- myocardial infraction --- 3D printing --- 3D model --- bioprinting --- cardiovascular medicine --- heart --- myocardium --- heart valves --- vascular graft --- endothelialization --- tissue engineering --- decorin --- fibronectin --- electrospinning --- endothelial progenitor cells --- bioreactor --- biostable polyurethane --- MicroRNA --- Mir-133 --- coronary heart disease --- biomarker --- meta-analysis


Book
Antioxidants in Foods
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Antioxidants in food have a dual role; on the one hand, they preserve the quality and shelf life of food products; on the other hand, they function as an external aid, helping to defend our living cells from the threat of oxidative stress. Therefore, foods rich in antioxidants are a useful tool to reduce morbidity and prevent degenerative diseases. Consequently, research related to antioxidants is continually growing. This book brings together 21 articles regarding the latest advances in the most relevant fields of food antioxidant research; from the identification and characterization of new active components, to their molecular mechanisms and the scientific evidence of their clinical use and effectiveness.

Keywords

Research & information: general --- Biology, life sciences --- Food & society --- green tea extract --- food processing --- tannase --- ultrasound --- antioxidant activity --- liver injury --- acclimatisation --- antioxidant defences --- chlorophyll fluorescence --- in vitro culture --- peroxidase --- stevia plants --- 7S basic globulins --- anti-inflammatory protein --- antioxidant protein --- cytokines --- glutathione --- iNOS --- nitric oxide --- oxidative stress --- sweet lupins group --- home-cooking --- extra virgin olive oil --- UPLC-ESI-QqQ-MS/MS --- healthy cooking --- Mediterranean diet --- phenolic compounds --- bioactive compounds --- functional pasta --- gluten-free pasta --- bioaccessibility --- bioavailability --- whole grain --- composite flour --- legumes --- food by-products --- avocados (Persea americana Mill.) --- low temperatures --- plastochromanol-8 --- tocotrienols --- tocopherols --- tocochromanols --- kombucha --- tea --- fermentation --- antioxidant --- flavonoids --- polyphenols --- ascorbic acid --- chlorophyll and carotenoid content --- biodiversity --- Capsicum annuum L. --- β-carotene --- statistical analysis --- rye bread --- microencapsulation --- phenolics --- in vitro relative bioaccessibility --- lipoxygenase --- cyclooxygenase --- acetylcholinesterase --- biological activity --- lycopene --- antioxidants --- cancer --- diabetes --- cardiovascular diseases --- skin disorders --- free radicals --- spectrophotometer --- limitations --- chemical reactions --- colorimetry --- anthraquinone --- free radical scavenging --- inflammatory cytokines --- apoptosis --- Rumex crispus --- skins --- seeds --- Vitis vinifera --- cyclic voltammetry --- anthocyanin metabolites --- cardioprotection --- hepatoprotection --- nephroprotection --- neuroprotection --- antioxidant peptides --- element of pork carcasses --- spectrometric analysis --- ascorbate --- ascorbate–glutathione cycle --- capsaicin --- catalase --- dihydrocapsaicin --- NADP-dehydrogenases --- superoxide dismutase --- red cabbage --- in vitro gastrointestinal digestion --- acid-resistant capsule --- UHPLC-Q-Orbitrap HRMS --- apples --- reducing and chelating capacity --- HPLC–DAD–MS/MS --- Dillenia indica --- heme oxygenase 1 (HO-1) --- nuclear factor erythroid 2-related factor 2 (Nrf2) --- RAW 264.7 cells --- apo-carotenals --- bone --- osteoclasts --- NFκB --- synergy --- n/a --- ascorbate-glutathione cycle --- HPLC-DAD-MS/MS


Book
Stem Cell Research on Cardiology
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Even today, cardiovascular diseases are the main cause of death worldwide, and therapeutic approaches are very restricted. Due to the limited regenerative capabilities of terminally differentiated cardiomyocytes post injury, new strategies to treat cardiac patients are urgently needed. Post myocardial injury, resident fibroblasts begin to generate the extracellular matrix, resulting in fibrosis, and finally, cardiac failure. Recently, preclinical investigations and clinical trials raised hope in stem cell-based approaches, to be an effective therapy option for these diseases. So far, several types of stem cells have been identified to be promising candidates to be applied for treatment: cardiac progenitor cells, bone marrow derived stem cells, embryonic and induced pluripotent stem cells, as well as their descendants. Furthermore, the innovative techniques of direct cardiac reprogramming of cells offered promising options for cardiovascular research, in vitro and in vivo. Hereby, the investigation of underlying and associated mechanisms triggering the therapeutic effects of stem cell application is of particular importance to improve approaches for heart patients. This Special Issue of Cells provides the latest update in the rapidly developing field of regenerative medicine in cardiology.

Keywords

Research & information: general --- Biology, life sciences --- Fabry disease --- human embryonic stem cells --- CRISPR/Cas9 genomic editing --- Mass spectrometry proteomic analysis --- hypertrophic cardiomyopathy --- disease model --- physical exercise --- cardiac cellular regeneration --- microRNA (miR) --- Akt signaling --- cardiomyocyte proliferation --- cardiac hypertrophy --- cardioprotection --- myocarditis --- inflammation --- leukocytes --- cardiomyocytes --- multi-electrode-array --- micro-electrode-array --- MEA --- drug/toxicity screening --- field potential --- arrhythmia --- electrocardiography --- cardiac regeneration --- stem cells --- iPSC --- PSC --- ESC --- cardiovascular disease --- regeneration --- cardiac progenitor cells --- induced pluripotent stem cells --- transdifferentiation --- direct reprogramming --- genetic engineering --- cardiac tissue engineering --- biomaterials --- 18F-FDG PET --- cardiac induced cells --- cardiac function --- non-invasive imaging --- human pluripotent stem cell --- ventricular --- maturation --- bone marrow stem cells --- angiogenesis --- myocardial infarction --- human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) --- iPS cells --- big conductance calcium activated potassium channel (BK) --- Maxi-K --- slo1 --- KCa1.1 --- iberiotoxin --- long QT syndrome --- mesenchymal stromal cells (MSC) --- mRNA --- miRNA --- cardiac reprogramming --- cardiac differentiation --- cardiovascular diseases --- adult stem cells --- myocardial infraction --- 3D printing --- 3D model --- bioprinting --- cardiovascular medicine --- heart --- myocardium --- heart valves --- vascular graft --- endothelialization --- tissue engineering --- decorin --- fibronectin --- electrospinning --- endothelial progenitor cells --- bioreactor --- biostable polyurethane --- MicroRNA --- Mir-133 --- coronary heart disease --- biomarker --- meta-analysis

Listing 1 - 10 of 13 << page
of 2
>>
Sort by