Listing 1 - 10 of 14 | << page >> |
Sort by
|
Choose an application
In recent years, the formulation of innovative photocatalysts activated by visible or solar light has been attracting increasing attention because of their notable potential for environmental remediation and use in organic synthesis reactions. Generally, the strategies for the development of visible-light-active photocatalysts are mainly focused on enhancing degradation efficiency (in the case of environmental remediation) or increasing selectivity toward the desired product (in the case of organic synthesis). These goals can be achieved by doping the semiconductor lattice with metal and/or non-metal elements in order to reduce band gap energy, thereby providing the semiconductor with the ability to absorb light at a wavelength higher than the UV range. Other interesting options are the formulation of different types of heterojunctions (to increase visible absorption properties and to reduce the recombination rate of charge carriers) and the development of innovative catalytic materials with semiconducting properties. This reprint is focused on visible-light-active photocatalysts for environmental remediation and organic synthesis, featuring the state of the art as well as advances in this field.
Technology: general issues --- History of engineering & technology --- Materials science --- TiO2 --- activated carbon --- nanohybrid --- photodegradation --- azo dyes --- sunlight --- photocatalysis --- visible light --- biomass --- waste --- green chemistry --- nanocatalysis --- nitrobenzene --- Ag/Cu2O --- persulfate --- sulfate radical --- heterostructure --- diamond nanocrystals --- bacterial photoinactivation --- sillenite Bi12NiO19 --- Rietveld method --- optical properties --- BB41 dye --- electrospinning --- carbon composite nanofibers --- water pollution --- Ag3PO4 --- photocatalyst --- C3N4 --- MoS2 --- composite --- photocatalytic oxidation --- Cr(VI) reduction --- cobalt --- decolorization --- Remazol Black --- sulfur --- hydrophosphination --- zirconium --- phosphines --- TiO2 thin film --- oxygen and argon gas flow rates --- acetaminophen --- photocatalytic activity --- response surface method --- Box-Behnken design --- TiO2 --- activated carbon --- nanohybrid --- photodegradation --- azo dyes --- sunlight --- photocatalysis --- visible light --- biomass --- waste --- green chemistry --- nanocatalysis --- nitrobenzene --- Ag/Cu2O --- persulfate --- sulfate radical --- heterostructure --- diamond nanocrystals --- bacterial photoinactivation --- sillenite Bi12NiO19 --- Rietveld method --- optical properties --- BB41 dye --- electrospinning --- carbon composite nanofibers --- water pollution --- Ag3PO4 --- photocatalyst --- C3N4 --- MoS2 --- composite --- photocatalytic oxidation --- Cr(VI) reduction --- cobalt --- decolorization --- Remazol Black --- sulfur --- hydrophosphination --- zirconium --- phosphines --- TiO2 thin film --- oxygen and argon gas flow rates --- acetaminophen --- photocatalytic activity --- response surface method --- Box-Behnken design
Choose an application
In recent years, the formulation of innovative photocatalysts activated by visible or solar light has been attracting increasing attention because of their notable potential for environmental remediation and use in organic synthesis reactions. Generally, the strategies for the development of visible-light-active photocatalysts are mainly focused on enhancing degradation efficiency (in the case of environmental remediation) or increasing selectivity toward the desired product (in the case of organic synthesis). These goals can be achieved by doping the semiconductor lattice with metal and/or non-metal elements in order to reduce band gap energy, thereby providing the semiconductor with the ability to absorb light at a wavelength higher than the UV range. Other interesting options are the formulation of different types of heterojunctions (to increase visible absorption properties and to reduce the recombination rate of charge carriers) and the development of innovative catalytic materials with semiconducting properties. This reprint is focused on visible-light-active photocatalysts for environmental remediation and organic synthesis, featuring the state of the art as well as advances in this field.
TiO2 --- activated carbon --- nanohybrid --- photodegradation --- azo dyes --- sunlight --- photocatalysis --- visible light --- biomass --- waste --- green chemistry --- nanocatalysis --- nitrobenzene --- Ag/Cu2O --- persulfate --- sulfate radical --- heterostructure --- diamond nanocrystals --- bacterial photoinactivation --- sillenite Bi12NiO19 --- Rietveld method --- optical properties --- BB41 dye --- electrospinning --- carbon composite nanofibers --- water pollution --- Ag3PO4 --- photocatalyst --- C3N4 --- MoS2 --- composite --- photocatalytic oxidation --- Cr(VI) reduction --- n/a --- cobalt --- decolorization --- Remazol Black --- sulfur --- hydrophosphination --- zirconium --- phosphines --- TiO2 thin film --- oxygen and argon gas flow rates --- acetaminophen --- photocatalytic activity --- response surface method --- Box–Behnken design --- Box-Behnken design
Choose an application
In recent years, the formulation of innovative photocatalysts activated by visible or solar light has been attracting increasing attention because of their notable potential for environmental remediation and use in organic synthesis reactions. Generally, the strategies for the development of visible-light-active photocatalysts are mainly focused on enhancing degradation efficiency (in the case of environmental remediation) or increasing selectivity toward the desired product (in the case of organic synthesis). These goals can be achieved by doping the semiconductor lattice with metal and/or non-metal elements in order to reduce band gap energy, thereby providing the semiconductor with the ability to absorb light at a wavelength higher than the UV range. Other interesting options are the formulation of different types of heterojunctions (to increase visible absorption properties and to reduce the recombination rate of charge carriers) and the development of innovative catalytic materials with semiconducting properties. This reprint is focused on visible-light-active photocatalysts for environmental remediation and organic synthesis, featuring the state of the art as well as advances in this field.
Technology: general issues --- History of engineering & technology --- Materials science --- TiO2 --- activated carbon --- nanohybrid --- photodegradation --- azo dyes --- sunlight --- photocatalysis --- visible light --- biomass --- waste --- green chemistry --- nanocatalysis --- nitrobenzene --- Ag/Cu2O --- persulfate --- sulfate radical --- heterostructure --- diamond nanocrystals --- bacterial photoinactivation --- sillenite Bi12NiO19 --- Rietveld method --- optical properties --- BB41 dye --- electrospinning --- carbon composite nanofibers --- water pollution --- Ag3PO4 --- photocatalyst --- C3N4 --- MoS2 --- composite --- photocatalytic oxidation --- Cr(VI) reduction --- n/a --- cobalt --- decolorization --- Remazol Black --- sulfur --- hydrophosphination --- zirconium --- phosphines --- TiO2 thin film --- oxygen and argon gas flow rates --- acetaminophen --- photocatalytic activity --- response surface method --- Box–Behnken design --- Box-Behnken design
Choose an application
In recent years, improving the sustainability of the steel industry and reducing its CO2 emissions has become a global focus. To achieve this goal, further process optimization in terms of energy and resource efficiency and the development of new processes and process routes are necessary. Modeling and simulation have established themselves as invaluable sources of information for otherwise unknown process parameters and as an alternative to plant trials that involves lower costs, risks, and time. Models also open up new possibilities for model-based control of metallurgical processes. This Special Issue focuses on recent advances in the modeling and simulation of unit processes in iron and steelmaking. It includes reviews on the fundamentals of modeling and simulation of metallurgical processes, as well as contributions from the areas of iron reduction/ironmaking, steelmaking via the primary and secondary route, and continuous casting.
Technology: general issues --- History of engineering & technology --- liquid metals --- bubble generation --- bubble size distribution --- porous plugs --- bubble deformation --- drag force --- lift force --- mathematical modelling --- computational fluid dynamic --- slag heat recovery --- heat exchanger --- drying --- slag energy content --- heat recovery technology --- RecHeat --- rotary kiln --- reduction process --- numerical simulation --- pre-reduction --- scrap preheating --- electric arc furnace --- continuous charging --- turbulence modelling --- RANS/LES/DNS --- inflow condition --- model validation --- model application --- energy demand --- regression --- artificial neural network --- Gaussian process regression --- Köhle formula --- evaluation model --- quantitative relationship --- scrap melting --- mass transfer coefficient --- steelmaking process --- direct current --- arc impingement --- arc gap --- gas density --- electric arc --- magneto hydrodynamics --- computational fluid dynamics --- real-time model --- estimation --- model predictive control --- steel refining --- mathematical modeling --- carbon composite briquette --- blast furnace ironmaking --- reaction kinetics --- coke saving --- direct reduction --- Midrex --- HYL --- Rist diagram --- energy consumption --- profile optimization --- modelling --- machine learning --- steelmaking --- fuzzy modelling --- evolving modelling --- continuous casting --- near net shape casting --- twin roll (Bessemer) casting --- horizontal single belt casting --- n/a --- Köhle formula
Choose an application
Lithium-ion batteries (LIBs), as a key part of the 2019 Nobel Prize in Chemistry, have become increasingly important in recent years, owing to their potential impact on building a more sustainable future. Compared with other batteries developed, LIBs offer high energy density, high discharge power, and a long service life. These characteristics have facilitated a remarkable advance of LIBs in many frontiers, including electric vehicles, portable and flexible electronics, and stationary applications. Since the field of LIBs is advancing rapidly and attracting an increasing number of researchers, it is necessary to often provide the community with the latest updates. Therefore, this book was designed to focus on updating the electrochemical community with the latest advances and prospects on various aspects of LIBs. The materials presented in this book cover advances in several fronts of the technology, ranging from detailed fundamental studies of the electrochemical cell to investigations to better improve parameters related to battery packs.
Research & information: general --- lithium-ion batteries --- coulombic efficiency --- capacity loss --- production strategies --- laser cutting --- cell manufacturing --- automotive pouch cells --- spent batteries and accumulators --- Li-ion cells --- legislation --- recycling --- porosity --- manufacturing --- tolerance --- Lithium-Ion --- capacity ratio --- electrolyte volume --- resistance measurement --- contact quality --- laser beam welding --- aluminium --- copper --- battery systems --- spatial power modulation --- single mode fibre laser --- EIS --- electrochemical impedance spectroscopy --- characterization --- diagnostics --- abuse test --- high temperature --- degradation --- safety --- ultrasonics --- ultrasound --- strain --- gassing --- gas evolution --- lithium-ionbattery --- Cahn-Hilliard equation --- intercalation --- particle size distribution --- battery safety --- hazard analysis --- gas analysis --- lithium-ion --- thermal runaway --- vent particle analysis --- vent gas emission --- internal resistance --- battery parameters --- equivalent circuit model --- capacity fade --- secondary applications --- end-of-life --- cell balancing --- temperature effects --- equivalent circuit models --- Li-ion battery packs --- thermal management systems --- electric vehicles --- sensitivity --- electrolyte --- lithium ion battery --- 4DM --- terminal voltage --- side reactions --- lithium-ion battery --- bipolar battery --- polymer-carbon composite --- current collector --- water-based electrode slurries --- carbon primer --- CNTs --- LMNO --- LTO --- n/a
Choose an application
Lithium-ion batteries (LIBs), as a key part of the 2019 Nobel Prize in Chemistry, have become increasingly important in recent years, owing to their potential impact on building a more sustainable future. Compared with other batteries developed, LIBs offer high energy density, high discharge power, and a long service life. These characteristics have facilitated a remarkable advance of LIBs in many frontiers, including electric vehicles, portable and flexible electronics, and stationary applications. Since the field of LIBs is advancing rapidly and attracting an increasing number of researchers, it is necessary to often provide the community with the latest updates. Therefore, this book was designed to focus on updating the electrochemical community with the latest advances and prospects on various aspects of LIBs. The materials presented in this book cover advances in several fronts of the technology, ranging from detailed fundamental studies of the electrochemical cell to investigations to better improve parameters related to battery packs.
lithium-ion batteries --- coulombic efficiency --- capacity loss --- production strategies --- laser cutting --- cell manufacturing --- automotive pouch cells --- spent batteries and accumulators --- Li-ion cells --- legislation --- recycling --- porosity --- manufacturing --- tolerance --- Lithium-Ion --- capacity ratio --- electrolyte volume --- resistance measurement --- contact quality --- laser beam welding --- aluminium --- copper --- battery systems --- spatial power modulation --- single mode fibre laser --- EIS --- electrochemical impedance spectroscopy --- characterization --- diagnostics --- abuse test --- high temperature --- degradation --- safety --- ultrasonics --- ultrasound --- strain --- gassing --- gas evolution --- lithium-ionbattery --- Cahn-Hilliard equation --- intercalation --- particle size distribution --- battery safety --- hazard analysis --- gas analysis --- lithium-ion --- thermal runaway --- vent particle analysis --- vent gas emission --- internal resistance --- battery parameters --- equivalent circuit model --- capacity fade --- secondary applications --- end-of-life --- cell balancing --- temperature effects --- equivalent circuit models --- Li-ion battery packs --- thermal management systems --- electric vehicles --- sensitivity --- electrolyte --- lithium ion battery --- 4DM --- terminal voltage --- side reactions --- lithium-ion battery --- bipolar battery --- polymer-carbon composite --- current collector --- water-based electrode slurries --- carbon primer --- CNTs --- LMNO --- LTO --- n/a
Choose an application
Lithium-ion batteries (LIBs), as a key part of the 2019 Nobel Prize in Chemistry, have become increasingly important in recent years, owing to their potential impact on building a more sustainable future. Compared with other batteries developed, LIBs offer high energy density, high discharge power, and a long service life. These characteristics have facilitated a remarkable advance of LIBs in many frontiers, including electric vehicles, portable and flexible electronics, and stationary applications. Since the field of LIBs is advancing rapidly and attracting an increasing number of researchers, it is necessary to often provide the community with the latest updates. Therefore, this book was designed to focus on updating the electrochemical community with the latest advances and prospects on various aspects of LIBs. The materials presented in this book cover advances in several fronts of the technology, ranging from detailed fundamental studies of the electrochemical cell to investigations to better improve parameters related to battery packs.
Research & information: general --- lithium-ion batteries --- coulombic efficiency --- capacity loss --- production strategies --- laser cutting --- cell manufacturing --- automotive pouch cells --- spent batteries and accumulators --- Li-ion cells --- legislation --- recycling --- porosity --- manufacturing --- tolerance --- Lithium-Ion --- capacity ratio --- electrolyte volume --- resistance measurement --- contact quality --- laser beam welding --- aluminium --- copper --- battery systems --- spatial power modulation --- single mode fibre laser --- EIS --- electrochemical impedance spectroscopy --- characterization --- diagnostics --- abuse test --- high temperature --- degradation --- safety --- ultrasonics --- ultrasound --- strain --- gassing --- gas evolution --- lithium-ionbattery --- Cahn-Hilliard equation --- intercalation --- particle size distribution --- battery safety --- hazard analysis --- gas analysis --- lithium-ion --- thermal runaway --- vent particle analysis --- vent gas emission --- internal resistance --- battery parameters --- equivalent circuit model --- capacity fade --- secondary applications --- end-of-life --- cell balancing --- temperature effects --- equivalent circuit models --- Li-ion battery packs --- thermal management systems --- electric vehicles --- sensitivity --- electrolyte --- lithium ion battery --- 4DM --- terminal voltage --- side reactions --- lithium-ion battery --- bipolar battery --- polymer-carbon composite --- current collector --- water-based electrode slurries --- carbon primer --- CNTs --- LMNO --- LTO --- lithium-ion batteries --- coulombic efficiency --- capacity loss --- production strategies --- laser cutting --- cell manufacturing --- automotive pouch cells --- spent batteries and accumulators --- Li-ion cells --- legislation --- recycling --- porosity --- manufacturing --- tolerance --- Lithium-Ion --- capacity ratio --- electrolyte volume --- resistance measurement --- contact quality --- laser beam welding --- aluminium --- copper --- battery systems --- spatial power modulation --- single mode fibre laser --- EIS --- electrochemical impedance spectroscopy --- characterization --- diagnostics --- abuse test --- high temperature --- degradation --- safety --- ultrasonics --- ultrasound --- strain --- gassing --- gas evolution --- lithium-ionbattery --- Cahn-Hilliard equation --- intercalation --- particle size distribution --- battery safety --- hazard analysis --- gas analysis --- lithium-ion --- thermal runaway --- vent particle analysis --- vent gas emission --- internal resistance --- battery parameters --- equivalent circuit model --- capacity fade --- secondary applications --- end-of-life --- cell balancing --- temperature effects --- equivalent circuit models --- Li-ion battery packs --- thermal management systems --- electric vehicles --- sensitivity --- electrolyte --- lithium ion battery --- 4DM --- terminal voltage --- side reactions --- lithium-ion battery --- bipolar battery --- polymer-carbon composite --- current collector --- water-based electrode slurries --- carbon primer --- CNTs --- LMNO --- LTO
Choose an application
Recently, energy development has received significant attention through the promising results of technology development, experimentation, computational modeling, and validation. However, it remains a persistent challenge to produce the needed energy while significantly reducing the environmental effects, such as the emission of greenhouse gases, which lead to climate change. Moreover, technological and economic limitations may also hinder energy development for sustainability. This book entitled Energy Development for Sustainability covers technologies, products, equipment, and devices as well as energy services based on software and data protected by patents and/or trademarks. This book will serve as a collection of the latest scientific and technological approaches to various energy development initiatives for sustainability encompassing novel sonocatalytic application and integrated algal and sludge-based wastewater treatment system, energy storage, sustainable building, gas absorption, organosolv pretreatment, energy usage and CO2 emission in transportation, coal regulation for energy, solar photovoltaic system, torrefaction for fuel production, energy management system, clean energy incubator, biofuels from microalgae, and the influence of COVID-19 on climate change. Overall, this book addresses researchers, advanced students, technical consultants, as well as decision-makers in industries and politics. This book contains comprehensive overview and in-depth technical research papers addressing recent progress in the area of energy development for sustainability. We hope the readers will enjoy this book.
Technology: general issues --- History of engineering & technology --- multi-objective optimization --- bioenergy --- biomass --- microalgae --- sludge --- wastewater --- algae --- biofuel production --- environmental policy --- life cycle assessment --- clean energy incubator --- core competitiveness evaluation --- matter-element extension --- TOPSIS --- KPCA --- NSGA-II --- LSSVM --- smart grid --- time-of-use --- demand bidding program --- battery energy storage system --- direct search method --- sorghum distilled residue --- thermogravimetric analysis --- torrefaction kinetics --- biomass and bioenergy --- particle swarm optimization (PSO) --- biochar --- LMDI decomposition --- spatiotemporal analysis --- ASEAN --- climate change --- CO2 emissions --- light trapping --- zero-depth concentrator --- light reflection --- internal-cell spacing --- energy system --- coal regulation --- pollution abatement --- environmental benefits --- health benefits --- transport --- spatial LMDI --- emissions --- Philippines --- Google Maps --- transportation --- energy use --- modeling --- vehicle flow --- organosolv pretreatment --- delignification --- fractionation --- organic solvent --- degraded empty fruit bunch --- COVID-19 --- CO2 --- fossil fuel --- Malaysia --- metal–organic framework --- MIL-101 --- solvent free --- adsorption --- carbon dioxide --- air conditioner --- cooling load --- heat conduction --- residential building --- roof insulation --- roof tile color --- solar reflectance --- metal–air battery --- carbon particles --- biomass waste --- electro-catalyst --- g-C3N4 --- carbon composite --- coconut shell husk --- characteristic --- sonocatalytic degradation --- malachite green --- multi-objective optimization --- bioenergy --- biomass --- microalgae --- sludge --- wastewater --- algae --- biofuel production --- environmental policy --- life cycle assessment --- clean energy incubator --- core competitiveness evaluation --- matter-element extension --- TOPSIS --- KPCA --- NSGA-II --- LSSVM --- smart grid --- time-of-use --- demand bidding program --- battery energy storage system --- direct search method --- sorghum distilled residue --- thermogravimetric analysis --- torrefaction kinetics --- biomass and bioenergy --- particle swarm optimization (PSO) --- biochar --- LMDI decomposition --- spatiotemporal analysis --- ASEAN --- climate change --- CO2 emissions --- light trapping --- zero-depth concentrator --- light reflection --- internal-cell spacing --- energy system --- coal regulation --- pollution abatement --- environmental benefits --- health benefits --- transport --- spatial LMDI --- emissions --- Philippines --- Google Maps --- transportation --- energy use --- modeling --- vehicle flow --- organosolv pretreatment --- delignification --- fractionation --- organic solvent --- degraded empty fruit bunch --- COVID-19 --- CO2 --- fossil fuel --- Malaysia --- metal–organic framework --- MIL-101 --- solvent free --- adsorption --- carbon dioxide --- air conditioner --- cooling load --- heat conduction --- residential building --- roof insulation --- roof tile color --- solar reflectance --- metal–air battery --- carbon particles --- biomass waste --- electro-catalyst --- g-C3N4 --- carbon composite --- coconut shell husk --- characteristic --- sonocatalytic degradation --- malachite green
Choose an application
Electromagnetic (EM) waves carry energy through propagation in space. This radiation associates with entangled electric and magnetic fields which must exist simultaneously. Although all EM waves travel at the speed of light in vacuum, they cover a wide range of frequencies called the EM spectrum. The various portions of the EM spectrum are referred to by various names based on their different attributes in the emission, transmission, and absorption of the corresponding waves and also based on their different practical applications. There are no certain boundaries separating these various portions, and the ranges tend to overlap. Overall, the EM spectrum, from the lowest to the highest frequency (longest to shortest wavelength) contains the following waves: radio frequency (RF), microwaves, millimeter waves, terahertz, infrared, visible light, ultraviolet, X-rays, and gamma rays. This Special Issue consists of sixteen papers covering a broad range of topics related to the applications of EM waves, from the design of filters and antennas for wireless communications to biomedical imaging and sensing and beyond.
History of engineering & technology --- bonding wire --- S parameters --- electromagnetic simulation --- port embedding --- balanced bandpass filter --- common mode suppression --- spurline --- source-load coupling --- stepped impedance resonator (SIR) --- open-ended waveguide --- slow-wave --- endfire --- radiation --- dispersion --- gain --- energy verification --- Hall probe --- dipole --- movable slit --- Goubau line --- non-invasive blood glucose measurement --- Acu-check --- lancet --- leaky waves --- surface waves --- ultra-wideband --- THz absorber --- high absorption --- polarization independent --- holography --- microwave imaging --- microwave measurement system --- nondestructive testing --- electromagnetic compatibility --- protection of information --- electromagnetic emissions --- computers and information processing --- data acquisition --- image recognition --- pattern recognition --- image processing --- graphic information --- LED array --- laser printer --- compromising emanations --- electromagnetic infiltration --- reconstruction --- non-invasive data acquisition --- Fourier series expansion --- nanorod --- multimode --- propagation characteristics --- guided wave --- bandpass filter --- half-wavelength resonator --- insertion loss --- phantom measurement system --- bone lesion detection --- ground penetrating radar --- reverse time migration --- Tibetan Plateau --- permafrost active layer --- internal structure --- Chebyshev filter --- cavity --- metamaterial --- waveguide --- X-band --- meta-resonator --- machine learning --- material identification --- microwave sensor array --- microwave waveguide --- dipole and horn antennas --- carbon-composite material --- graphene --- antenna measurements --- electromagnetic waves --- bonding wire --- S parameters --- electromagnetic simulation --- port embedding --- balanced bandpass filter --- common mode suppression --- spurline --- source-load coupling --- stepped impedance resonator (SIR) --- open-ended waveguide --- slow-wave --- endfire --- radiation --- dispersion --- gain --- energy verification --- Hall probe --- dipole --- movable slit --- Goubau line --- non-invasive blood glucose measurement --- Acu-check --- lancet --- leaky waves --- surface waves --- ultra-wideband --- THz absorber --- high absorption --- polarization independent --- holography --- microwave imaging --- microwave measurement system --- nondestructive testing --- electromagnetic compatibility --- protection of information --- electromagnetic emissions --- computers and information processing --- data acquisition --- image recognition --- pattern recognition --- image processing --- graphic information --- LED array --- laser printer --- compromising emanations --- electromagnetic infiltration --- reconstruction --- non-invasive data acquisition --- Fourier series expansion --- nanorod --- multimode --- propagation characteristics --- guided wave --- bandpass filter --- half-wavelength resonator --- insertion loss --- phantom measurement system --- bone lesion detection --- ground penetrating radar --- reverse time migration --- Tibetan Plateau --- permafrost active layer --- internal structure --- Chebyshev filter --- cavity --- metamaterial --- waveguide --- X-band --- meta-resonator --- machine learning --- material identification --- microwave sensor array --- microwave waveguide --- dipole and horn antennas --- carbon-composite material --- graphene --- antenna measurements --- electromagnetic waves
Choose an application
Recently, energy development has received significant attention through the promising results of technology development, experimentation, computational modeling, and validation. However, it remains a persistent challenge to produce the needed energy while significantly reducing the environmental effects, such as the emission of greenhouse gases, which lead to climate change. Moreover, technological and economic limitations may also hinder energy development for sustainability. This book entitled Energy Development for Sustainability covers technologies, products, equipment, and devices as well as energy services based on software and data protected by patents and/or trademarks. This book will serve as a collection of the latest scientific and technological approaches to various energy development initiatives for sustainability encompassing novel sonocatalytic application and integrated algal and sludge-based wastewater treatment system, energy storage, sustainable building, gas absorption, organosolv pretreatment, energy usage and CO2 emission in transportation, coal regulation for energy, solar photovoltaic system, torrefaction for fuel production, energy management system, clean energy incubator, biofuels from microalgae, and the influence of COVID-19 on climate change. Overall, this book addresses researchers, advanced students, technical consultants, as well as decision-makers in industries and politics. This book contains comprehensive overview and in-depth technical research papers addressing recent progress in the area of energy development for sustainability. We hope the readers will enjoy this book.
Technology: general issues --- History of engineering & technology --- multi-objective optimization --- bioenergy --- biomass --- microalgae --- sludge --- wastewater --- algae --- biofuel production --- environmental policy --- life cycle assessment --- clean energy incubator --- core competitiveness evaluation --- matter-element extension --- TOPSIS --- KPCA --- NSGA-II --- LSSVM --- smart grid --- time-of-use --- demand bidding program --- battery energy storage system --- direct search method --- sorghum distilled residue --- thermogravimetric analysis --- torrefaction kinetics --- biomass and bioenergy --- particle swarm optimization (PSO) --- biochar --- LMDI decomposition --- spatiotemporal analysis --- ASEAN --- climate change --- CO2 emissions --- light trapping --- zero-depth concentrator --- light reflection --- internal-cell spacing --- energy system --- coal regulation --- pollution abatement --- environmental benefits --- health benefits --- transport --- spatial LMDI --- emissions --- Philippines --- Google Maps --- transportation --- energy use --- modeling --- vehicle flow --- organosolv pretreatment --- delignification --- fractionation --- organic solvent --- degraded empty fruit bunch --- COVID-19 --- CO2 --- fossil fuel --- Malaysia --- metal–organic framework --- MIL-101 --- solvent free --- adsorption --- carbon dioxide --- air conditioner --- cooling load --- heat conduction --- residential building --- roof insulation --- roof tile color --- solar reflectance --- metal–air battery --- carbon particles --- biomass waste --- electro-catalyst --- g-C3N4 --- carbon composite --- coconut shell husk --- characteristic --- sonocatalytic degradation --- malachite green
Listing 1 - 10 of 14 | << page >> |
Sort by
|