Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2021 (6)

Listing 1 - 6 of 6
Sort by

Book
Plasma Biology
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Irving Langmuir coined the name “plasma” to describe an ionized gas back in 1927. Just over 90 years later, plasma technology is becoming increasingly important in our daily life. For example, in the medical field and dentistry, plasma is used as a method of disinfection and sterilization. Moreover, additional potential novel applications of this technology in different forms of therapy have been proposed. In the agricultural sector, plasma technology could contribute to higher crop yields by enhancing seed germination and the growth of plants, as well as the preservation of foods by disinfection. Plasma technology could also be utilized in environmental applications, including water treatment and remediation, as well as treatment of exhaust gases. Although recent extensive studies have uncovered the broad potential of plasma technology, its mechanisms of action remain unclear. Therefore, further studies aimed at elucidating the molecular mechanisms of plasma technology are required. This book is composed of original articles and reviews investigating the molecular mechanisms of plasma biology. Relevant areas of study include applications in plasma medicine, plasma agriculture, as well as plasma chemistry. Studies on potential therapeutic approaches using plasma itself and plasma-treated solutions are also included.

Keywords

Technology: general issues --- cold jet atmospheric pressure plasma --- reactive oxygen and nitrogen species --- backbone cleavage --- hydroxylation --- carbonyl formation --- cold atmospheric plasma --- autophagy --- silymarin nanoemulsion --- PI3K/mTOR pathway --- wound healing --- oncology --- regenerative medicine --- plasma --- atmospheric pressure plasma jets --- large-scale imaging --- machine learning --- cancer treatment --- cellular imaging --- reactive oxygen species --- mesoporous silica nanoparticles --- biomaterials --- bone regeneration --- cytotoxicity --- proliferation --- osteogenic differentiation --- plasma-activated medium --- TRAIL --- DR5 --- apoptosis --- ROS/RNS --- atmospheric-pressure plasma --- titanium --- amine --- mesenchymal stem cells --- antibiotic resistant bacteria --- antibiotic resistance gene --- disinfection --- E. coli --- inactivation --- sterilization --- cell migration --- endothelial cells VEGF --- gynaecological oncology --- vulva cancer --- risk factors --- plasma tissue interaction --- premalignant lesions --- cancer development --- patient stratification --- individualised profiling --- predictive preventive personalised medicine (PPPM/3PM) --- treatment --- Candida albicans --- cold plasma treatment --- genome --- hydrolytic enzyme activity --- carbon assimilation --- drug susceptibility --- malignant melanoma --- acidification --- nitrite --- acidified nitrite --- nitration --- membrane damage --- CAP --- cancer --- cold atmospheric pressure plasma --- hydrogen peroxide --- hypochlorous acid --- moDCs --- peroxynitrite --- RNS --- ROS --- non-thermal plasma --- biological activity --- breast cancer --- solution plasma process --- aqueous solutions --- chitin --- chitosan --- degradation --- deacetylation --- non-thermal atmospheric pressure plasma --- Pectobacteriaceae --- Dickeya spp. --- Pectobacterium spp. --- antibacterial --- plant protection --- agriculture --- selective cancer treatment --- reaction network --- mathematical modeling --- Mdm2-p53 --- plasma treatment --- molecular dynamic (MD) simulations --- cold jet atmospheric pressure plasma --- reactive oxygen and nitrogen species --- backbone cleavage --- hydroxylation --- carbonyl formation --- cold atmospheric plasma --- autophagy --- silymarin nanoemulsion --- PI3K/mTOR pathway --- wound healing --- oncology --- regenerative medicine --- plasma --- atmospheric pressure plasma jets --- large-scale imaging --- machine learning --- cancer treatment --- cellular imaging --- reactive oxygen species --- mesoporous silica nanoparticles --- biomaterials --- bone regeneration --- cytotoxicity --- proliferation --- osteogenic differentiation --- plasma-activated medium --- TRAIL --- DR5 --- apoptosis --- ROS/RNS --- atmospheric-pressure plasma --- titanium --- amine --- mesenchymal stem cells --- antibiotic resistant bacteria --- antibiotic resistance gene --- disinfection --- E. coli --- inactivation --- sterilization --- cell migration --- endothelial cells VEGF --- gynaecological oncology --- vulva cancer --- risk factors --- plasma tissue interaction --- premalignant lesions --- cancer development --- patient stratification --- individualised profiling --- predictive preventive personalised medicine (PPPM/3PM) --- treatment --- Candida albicans --- cold plasma treatment --- genome --- hydrolytic enzyme activity --- carbon assimilation --- drug susceptibility --- malignant melanoma --- acidification --- nitrite --- acidified nitrite --- nitration --- membrane damage --- CAP --- cancer --- cold atmospheric pressure plasma --- hydrogen peroxide --- hypochlorous acid --- moDCs --- peroxynitrite --- RNS --- ROS --- non-thermal plasma --- biological activity --- breast cancer --- solution plasma process --- aqueous solutions --- chitin --- chitosan --- degradation --- deacetylation --- non-thermal atmospheric pressure plasma --- Pectobacteriaceae --- Dickeya spp. --- Pectobacterium spp. --- antibacterial --- plant protection --- agriculture --- selective cancer treatment --- reaction network --- mathematical modeling --- Mdm2-p53 --- plasma treatment --- molecular dynamic (MD) simulations


Book
The Shaping of Cancer by the Tumour Microenvironment and Its Relevance for Cancer Therapy
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In this book, we present a compilation of original research articles as well as review articles that are focused on improving our understanding of the molecular and cellular mechanisms by which cancer cells adapt to their microenvironment. These include the interplay between cancer cells and the surrounding microenvironmental cells (e.g., macrophages, tumor-infiltrating lymphocytes and myeloid cells) and microenvironmental environments (e.g., oxidative stress, pH, hypoxia) and the implications of this dynamic interaction to tumor radioresistance, chemoresistance, invasion and metastasis. Finally, the importance and relevance of these findings are translated to cancer therapy.

Keywords

Medicine --- hypoxia --- macrophages --- colon cancer --- tumor microenvironment --- immune cell infiltration --- prognosis --- feline mammary carcinoma --- PD-1 --- PD-L1 --- CTLA-4 --- TNF-α --- biomarkers --- immunotherapy --- cancer --- histone modification --- inhibitor --- KDM5B --- molecular docking --- repurposing --- cancer acidity --- hyperosmolarity --- cross-presentation --- tumour microenvironment --- syngeneic model --- prostate cancer --- radiotherapy --- preclinical modelling --- myeloid-derived suppressor cells --- biomarker --- stroma --- cancer-associated fibroblast (CAF) --- extracellular matrix (ECM) --- cytokine/chemokine --- growth factors --- pro- and anti-tumor immune cells --- immunomodulatory roles --- radiotherapy dose fractionation --- radioresistance --- radiosensitivity --- breast cancer --- S100A10 (p11) --- tumor growth --- tumor progression --- metastasis --- carcinoma --- mammary gland --- triple negative --- pre-metastatic niche --- pro-inflammatory cytokines --- clinical trials --- evolutionary therapy --- darwinian evolution --- cancer cells subpopulations --- diclofenac --- koningic acid --- spheroid --- 3D co-culture --- microenvironment --- resistance --- myeloid cells --- cancer development --- molecular subtypes of pancreatic cancer --- chemotherapy response --- pancreatic stellate cells --- regulatory T cells --- tumor-associated macrophages --- myeloid derived suppressor cells --- glioblastoma (GB) --- Hypoxia Inducible Factor (HIF) --- glioma stem cells (GSC) --- oxidative stress --- reactive oxygen species --- plasmin --- plasminogen --- S100A10 --- uPA --- uPAR --- PAI-1 --- PAI-2 --- cancer stem cells --- cancer recurrence --- therapeutic resistance --- signaling pathways --- targeted therapy --- head and neck cancer --- lung cancer --- bladder cancer --- hypoxia --- macrophages --- colon cancer --- tumor microenvironment --- immune cell infiltration --- prognosis --- feline mammary carcinoma --- PD-1 --- PD-L1 --- CTLA-4 --- TNF-α --- biomarkers --- immunotherapy --- cancer --- histone modification --- inhibitor --- KDM5B --- molecular docking --- repurposing --- cancer acidity --- hyperosmolarity --- cross-presentation --- tumour microenvironment --- syngeneic model --- prostate cancer --- radiotherapy --- preclinical modelling --- myeloid-derived suppressor cells --- biomarker --- stroma --- cancer-associated fibroblast (CAF) --- extracellular matrix (ECM) --- cytokine/chemokine --- growth factors --- pro- and anti-tumor immune cells --- immunomodulatory roles --- radiotherapy dose fractionation --- radioresistance --- radiosensitivity --- breast cancer --- S100A10 (p11) --- tumor growth --- tumor progression --- metastasis --- carcinoma --- mammary gland --- triple negative --- pre-metastatic niche --- pro-inflammatory cytokines --- clinical trials --- evolutionary therapy --- darwinian evolution --- cancer cells subpopulations --- diclofenac --- koningic acid --- spheroid --- 3D co-culture --- microenvironment --- resistance --- myeloid cells --- cancer development --- molecular subtypes of pancreatic cancer --- chemotherapy response --- pancreatic stellate cells --- regulatory T cells --- tumor-associated macrophages --- myeloid derived suppressor cells --- glioblastoma (GB) --- Hypoxia Inducible Factor (HIF) --- glioma stem cells (GSC) --- oxidative stress --- reactive oxygen species --- plasmin --- plasminogen --- S100A10 --- uPA --- uPAR --- PAI-1 --- PAI-2 --- cancer stem cells --- cancer recurrence --- therapeutic resistance --- signaling pathways --- targeted therapy --- head and neck cancer --- lung cancer --- bladder cancer


Book
The Shaping of Cancer by the Tumour Microenvironment and Its Relevance for Cancer Therapy
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In this book, we present a compilation of original research articles as well as review articles that are focused on improving our understanding of the molecular and cellular mechanisms by which cancer cells adapt to their microenvironment. These include the interplay between cancer cells and the surrounding microenvironmental cells (e.g., macrophages, tumor-infiltrating lymphocytes and myeloid cells) and microenvironmental environments (e.g., oxidative stress, pH, hypoxia) and the implications of this dynamic interaction to tumor radioresistance, chemoresistance, invasion and metastasis. Finally, the importance and relevance of these findings are translated to cancer therapy.

Keywords

Medicine --- hypoxia --- macrophages --- colon cancer --- tumor microenvironment --- immune cell infiltration --- prognosis --- feline mammary carcinoma --- PD-1 --- PD-L1 --- CTLA-4 --- TNF-α --- biomarkers --- immunotherapy --- cancer --- histone modification --- inhibitor --- KDM5B --- molecular docking --- repurposing --- cancer acidity --- hyperosmolarity --- cross-presentation --- tumour microenvironment --- syngeneic model --- prostate cancer --- radiotherapy --- preclinical modelling --- myeloid-derived suppressor cells --- biomarker --- stroma --- cancer-associated fibroblast (CAF) --- extracellular matrix (ECM) --- cytokine/chemokine --- growth factors --- pro- and anti-tumor immune cells --- immunomodulatory roles --- radiotherapy dose fractionation --- radioresistance --- radiosensitivity --- breast cancer --- S100A10 (p11) --- tumor growth --- tumor progression --- metastasis --- carcinoma --- mammary gland --- triple negative --- pre-metastatic niche --- pro-inflammatory cytokines --- clinical trials --- evolutionary therapy --- darwinian evolution --- cancer cells subpopulations --- diclofenac --- koningic acid --- spheroid --- 3D co-culture --- microenvironment --- resistance --- myeloid cells --- cancer development --- molecular subtypes of pancreatic cancer --- chemotherapy response --- pancreatic stellate cells --- regulatory T cells --- tumor-associated macrophages --- myeloid derived suppressor cells --- glioblastoma (GB) --- Hypoxia Inducible Factor (HIF) --- glioma stem cells (GSC) --- oxidative stress --- reactive oxygen species --- plasmin --- plasminogen --- S100A10 --- uPA --- uPAR --- PAI-1 --- PAI-2 --- cancer stem cells --- cancer recurrence --- therapeutic resistance --- signaling pathways --- targeted therapy --- head and neck cancer --- lung cancer --- bladder cancer


Book
Plasma Biology
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Irving Langmuir coined the name “plasma” to describe an ionized gas back in 1927. Just over 90 years later, plasma technology is becoming increasingly important in our daily life. For example, in the medical field and dentistry, plasma is used as a method of disinfection and sterilization. Moreover, additional potential novel applications of this technology in different forms of therapy have been proposed. In the agricultural sector, plasma technology could contribute to higher crop yields by enhancing seed germination and the growth of plants, as well as the preservation of foods by disinfection. Plasma technology could also be utilized in environmental applications, including water treatment and remediation, as well as treatment of exhaust gases. Although recent extensive studies have uncovered the broad potential of plasma technology, its mechanisms of action remain unclear. Therefore, further studies aimed at elucidating the molecular mechanisms of plasma technology are required. This book is composed of original articles and reviews investigating the molecular mechanisms of plasma biology. Relevant areas of study include applications in plasma medicine, plasma agriculture, as well as plasma chemistry. Studies on potential therapeutic approaches using plasma itself and plasma-treated solutions are also included.

Keywords

Technology: general issues --- cold jet atmospheric pressure plasma --- reactive oxygen and nitrogen species --- backbone cleavage --- hydroxylation --- carbonyl formation --- cold atmospheric plasma --- autophagy --- silymarin nanoemulsion --- PI3K/mTOR pathway --- wound healing --- oncology --- regenerative medicine --- plasma --- atmospheric pressure plasma jets --- large-scale imaging --- machine learning --- cancer treatment --- cellular imaging --- reactive oxygen species --- mesoporous silica nanoparticles --- biomaterials --- bone regeneration --- cytotoxicity --- proliferation --- osteogenic differentiation --- plasma-activated medium --- TRAIL --- DR5 --- apoptosis --- ROS/RNS --- atmospheric-pressure plasma --- titanium --- amine --- mesenchymal stem cells --- antibiotic resistant bacteria --- antibiotic resistance gene --- disinfection --- E. coli --- inactivation --- sterilization --- cell migration --- endothelial cells VEGF --- gynaecological oncology --- vulva cancer --- risk factors --- plasma tissue interaction --- premalignant lesions --- cancer development --- patient stratification --- individualised profiling --- predictive preventive personalised medicine (PPPM/3PM) --- treatment --- Candida albicans --- cold plasma treatment --- genome --- hydrolytic enzyme activity --- carbon assimilation --- drug susceptibility --- malignant melanoma --- acidification --- nitrite --- acidified nitrite --- nitration --- membrane damage --- CAP --- cancer --- cold atmospheric pressure plasma --- hydrogen peroxide --- hypochlorous acid --- moDCs --- peroxynitrite --- RNS --- ROS --- non-thermal plasma --- biological activity --- breast cancer --- solution plasma process --- aqueous solutions --- chitin --- chitosan --- degradation --- deacetylation --- non-thermal atmospheric pressure plasma --- Pectobacteriaceae --- Dickeya spp. --- Pectobacterium spp. --- antibacterial --- plant protection --- agriculture --- selective cancer treatment --- reaction network --- mathematical modeling --- n/a --- Mdm2–p53 --- plasma treatment --- molecular dynamic (MD) simulations --- Mdm2-p53


Book
Plasma Biology
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Irving Langmuir coined the name “plasma” to describe an ionized gas back in 1927. Just over 90 years later, plasma technology is becoming increasingly important in our daily life. For example, in the medical field and dentistry, plasma is used as a method of disinfection and sterilization. Moreover, additional potential novel applications of this technology in different forms of therapy have been proposed. In the agricultural sector, plasma technology could contribute to higher crop yields by enhancing seed germination and the growth of plants, as well as the preservation of foods by disinfection. Plasma technology could also be utilized in environmental applications, including water treatment and remediation, as well as treatment of exhaust gases. Although recent extensive studies have uncovered the broad potential of plasma technology, its mechanisms of action remain unclear. Therefore, further studies aimed at elucidating the molecular mechanisms of plasma technology are required. This book is composed of original articles and reviews investigating the molecular mechanisms of plasma biology. Relevant areas of study include applications in plasma medicine, plasma agriculture, as well as plasma chemistry. Studies on potential therapeutic approaches using plasma itself and plasma-treated solutions are also included.

Keywords

cold jet atmospheric pressure plasma --- reactive oxygen and nitrogen species --- backbone cleavage --- hydroxylation --- carbonyl formation --- cold atmospheric plasma --- autophagy --- silymarin nanoemulsion --- PI3K/mTOR pathway --- wound healing --- oncology --- regenerative medicine --- plasma --- atmospheric pressure plasma jets --- large-scale imaging --- machine learning --- cancer treatment --- cellular imaging --- reactive oxygen species --- mesoporous silica nanoparticles --- biomaterials --- bone regeneration --- cytotoxicity --- proliferation --- osteogenic differentiation --- plasma-activated medium --- TRAIL --- DR5 --- apoptosis --- ROS/RNS --- atmospheric-pressure plasma --- titanium --- amine --- mesenchymal stem cells --- antibiotic resistant bacteria --- antibiotic resistance gene --- disinfection --- E. coli --- inactivation --- sterilization --- cell migration --- endothelial cells VEGF --- gynaecological oncology --- vulva cancer --- risk factors --- plasma tissue interaction --- premalignant lesions --- cancer development --- patient stratification --- individualised profiling --- predictive preventive personalised medicine (PPPM/3PM) --- treatment --- Candida albicans --- cold plasma treatment --- genome --- hydrolytic enzyme activity --- carbon assimilation --- drug susceptibility --- malignant melanoma --- acidification --- nitrite --- acidified nitrite --- nitration --- membrane damage --- CAP --- cancer --- cold atmospheric pressure plasma --- hydrogen peroxide --- hypochlorous acid --- moDCs --- peroxynitrite --- RNS --- ROS --- non-thermal plasma --- biological activity --- breast cancer --- solution plasma process --- aqueous solutions --- chitin --- chitosan --- degradation --- deacetylation --- non-thermal atmospheric pressure plasma --- Pectobacteriaceae --- Dickeya spp. --- Pectobacterium spp. --- antibacterial --- plant protection --- agriculture --- selective cancer treatment --- reaction network --- mathematical modeling --- n/a --- Mdm2–p53 --- plasma treatment --- molecular dynamic (MD) simulations --- Mdm2-p53


Book
The Shaping of Cancer by the Tumour Microenvironment and Its Relevance for Cancer Therapy
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In this book, we present a compilation of original research articles as well as review articles that are focused on improving our understanding of the molecular and cellular mechanisms by which cancer cells adapt to their microenvironment. These include the interplay between cancer cells and the surrounding microenvironmental cells (e.g., macrophages, tumor-infiltrating lymphocytes and myeloid cells) and microenvironmental environments (e.g., oxidative stress, pH, hypoxia) and the implications of this dynamic interaction to tumor radioresistance, chemoresistance, invasion and metastasis. Finally, the importance and relevance of these findings are translated to cancer therapy.

Keywords

hypoxia --- macrophages --- colon cancer --- tumor microenvironment --- immune cell infiltration --- prognosis --- feline mammary carcinoma --- PD-1 --- PD-L1 --- CTLA-4 --- TNF-α --- biomarkers --- immunotherapy --- cancer --- histone modification --- inhibitor --- KDM5B --- molecular docking --- repurposing --- cancer acidity --- hyperosmolarity --- cross-presentation --- tumour microenvironment --- syngeneic model --- prostate cancer --- radiotherapy --- preclinical modelling --- myeloid-derived suppressor cells --- biomarker --- stroma --- cancer-associated fibroblast (CAF) --- extracellular matrix (ECM) --- cytokine/chemokine --- growth factors --- pro- and anti-tumor immune cells --- immunomodulatory roles --- radiotherapy dose fractionation --- radioresistance --- radiosensitivity --- breast cancer --- S100A10 (p11) --- tumor growth --- tumor progression --- metastasis --- carcinoma --- mammary gland --- triple negative --- pre-metastatic niche --- pro-inflammatory cytokines --- clinical trials --- evolutionary therapy --- darwinian evolution --- cancer cells subpopulations --- diclofenac --- koningic acid --- spheroid --- 3D co-culture --- microenvironment --- resistance --- myeloid cells --- cancer development --- molecular subtypes of pancreatic cancer --- chemotherapy response --- pancreatic stellate cells --- regulatory T cells --- tumor-associated macrophages --- myeloid derived suppressor cells --- glioblastoma (GB) --- Hypoxia Inducible Factor (HIF) --- glioma stem cells (GSC) --- oxidative stress --- reactive oxygen species --- plasmin --- plasminogen --- S100A10 --- uPA --- uPAR --- PAI-1 --- PAI-2 --- cancer stem cells --- cancer recurrence --- therapeutic resistance --- signaling pathways --- targeted therapy --- head and neck cancer --- lung cancer --- bladder cancer

Listing 1 - 6 of 6
Sort by