Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULiège (3)

VIVES (3)

Vlaams Parlement (3)

More...

Resource type

book (8)


Language

English (8)


Year
From To Submit

2021 (8)

Listing 1 - 8 of 8
Sort by

Book
Integrative Multi-Omics in Biomedical Research
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Genomics technologies revolutionised biomedicine research, but the genome alone is not sufficient to capture biological complexity. Postgenomic methods, typically based on mass spectrometry, comprise the analysis of metabolites, lipids, and proteins and are an essential complement to genomics and transcriptomics. Multidimensional omics is becoming established to provide accurate and comprehensive state descriptions. This book covers the latest methodological developments for, and applications of integrative multi-omics in biomedical research.


Book
Integrative Multi-Omics in Biomedical Research
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Genomics technologies revolutionised biomedicine research, but the genome alone is not sufficient to capture biological complexity. Postgenomic methods, typically based on mass spectrometry, comprise the analysis of metabolites, lipids, and proteins and are an essential complement to genomics and transcriptomics. Multidimensional omics is becoming established to provide accurate and comprehensive state descriptions. This book covers the latest methodological developments for, and applications of integrative multi-omics in biomedical research.

Keywords

Research & information: general --- Biology, life sciences --- target identification --- target validation --- label-free method for drugs --- anti-angiogenesis --- mechanism of action --- receptor tyrosine kinases --- curcumin --- natural products --- lipid --- lipidomics --- cardiac metaplasia --- Barrett's esophagus --- esophageal adenocarcinoma --- microbiota --- DNA sensing --- IFI16 --- cGAS --- innate immunity --- protein interactions --- virus-host interactions --- post-translational modifications --- mass spectrometry --- proteomics --- transcriptomics --- multi-omics --- multi-omics analysis --- study design --- bioinformatics --- machine learning --- analysis flow --- metabolomics --- planned myocardial infarction (PMI) --- myocardial infarction (MI) --- exercise --- heart --- cheminformatics --- batch variations --- eicosanoids --- fetal calf serum --- peroxisomes --- host-pathogen interactions --- secretome --- macrophages --- acute myeloid leukemia --- HL-60 cell line --- ATRA --- induced differentiation --- transcriptome --- proteome --- transcription factors --- key molecules --- regulatory pathway modelling --- SRM --- endometriosis --- inflammation --- target identification --- target validation --- label-free method for drugs --- anti-angiogenesis --- mechanism of action --- receptor tyrosine kinases --- curcumin --- natural products --- lipid --- lipidomics --- cardiac metaplasia --- Barrett's esophagus --- esophageal adenocarcinoma --- microbiota --- DNA sensing --- IFI16 --- cGAS --- innate immunity --- protein interactions --- virus-host interactions --- post-translational modifications --- mass spectrometry --- proteomics --- transcriptomics --- multi-omics --- multi-omics analysis --- study design --- bioinformatics --- machine learning --- analysis flow --- metabolomics --- planned myocardial infarction (PMI) --- myocardial infarction (MI) --- exercise --- heart --- cheminformatics --- batch variations --- eicosanoids --- fetal calf serum --- peroxisomes --- host-pathogen interactions --- secretome --- macrophages --- acute myeloid leukemia --- HL-60 cell line --- ATRA --- induced differentiation --- transcriptome --- proteome --- transcription factors --- key molecules --- regulatory pathway modelling --- SRM --- endometriosis --- inflammation


Book
Radiation Response Biomarkers for Individualised Cancer Treatments
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Personalised medicine is the next step in healthcare, especially when applied to genetically diverse diseases such as cancers. Naturally, a host of methods need to evolve alongside this, in order to allow the practice and implementation of individual treatment regimens. One of the major tasks for the development of personalised treatment of cancer is the identification and validation of a comprehensive, robust, and reliable panel of biomarkers that guide the clinicians to provide the best treatment to patients. This is indeed important with regards to radiotherapy; not only do biomarkers allow for the assessment of treatability, tumour response, and the radiosensitivity of healthy tissue of the treated patient. Furthermore, biomarkers should allow for the evaluation of the risks of developing adverse late effects as a result of radiotherapy such as second cancers and non-cancer effects, for example cardiovascular injury and cataract formation. Knowledge of all of these factors would allow for the development of a tailored radiation therapy regime. This Special Issue of the Journal of Personalised Medicine covers the topic of Radiation Response Biomarkers in the context of individualised cancer treatments, and offers an insight into some of the further evolution of radiation response biomarkers, their usefulness in guiding clinicians, and their application in radiation therapy.

Keywords

Medicine --- carbon-ion radiotherapy --- head-and-neck tumors --- squamous cell carcinoma --- radiosensitivity --- relative biological effectiveness --- lung cancer --- radiotherapy --- radiotherapy monitoring --- radiation-induced lung injury --- RILI --- pneumonitis --- radiation-induced lung fibrosis --- RILF --- circulating biomarkers --- microRNA --- micronuclei --- uterine cervical cancer --- cGAS --- STING --- abscopal effect --- immunotherapy --- PBMCS --- micronucleus assay --- biological dosimetry --- human blood --- genotoxicity tests --- ionizing radiation --- biomarkers --- dicentric assay --- gamma H2AX foci assay --- health surveillance analyses --- clonogenic assays --- methods --- plating --- cancer --- radiation --- head and neck cancer --- exosomes --- serum --- metabolomics --- GC/MS --- biodosimetry --- chromosome aberrations --- normal tissue toxicity --- predictive tests --- normal tissue --- biomarker --- protein --- immune infiltrate --- stroma --- tumour microenvironment --- proteomics --- telomeres --- chromosomal instability --- inversions --- prostate cancer --- IMRT --- machine learning --- individual radiosensitivity --- late effects --- personalized medicine --- liquid biopsy --- circulating tumour cells --- extracellular vesicles --- microRNAs --- immune system --- inflammation --- carbon-ion radiotherapy --- head-and-neck tumors --- squamous cell carcinoma --- radiosensitivity --- relative biological effectiveness --- lung cancer --- radiotherapy --- radiotherapy monitoring --- radiation-induced lung injury --- RILI --- pneumonitis --- radiation-induced lung fibrosis --- RILF --- circulating biomarkers --- microRNA --- micronuclei --- uterine cervical cancer --- cGAS --- STING --- abscopal effect --- immunotherapy --- PBMCS --- micronucleus assay --- biological dosimetry --- human blood --- genotoxicity tests --- ionizing radiation --- biomarkers --- dicentric assay --- gamma H2AX foci assay --- health surveillance analyses --- clonogenic assays --- methods --- plating --- cancer --- radiation --- head and neck cancer --- exosomes --- serum --- metabolomics --- GC/MS --- biodosimetry --- chromosome aberrations --- normal tissue toxicity --- predictive tests --- normal tissue --- biomarker --- protein --- immune infiltrate --- stroma --- tumour microenvironment --- proteomics --- telomeres --- chromosomal instability --- inversions --- prostate cancer --- IMRT --- machine learning --- individual radiosensitivity --- late effects --- personalized medicine --- liquid biopsy --- circulating tumour cells --- extracellular vesicles --- microRNAs --- immune system --- inflammation


Book
Integrative Multi-Omics in Biomedical Research
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Genomics technologies revolutionised biomedicine research, but the genome alone is not sufficient to capture biological complexity. Postgenomic methods, typically based on mass spectrometry, comprise the analysis of metabolites, lipids, and proteins and are an essential complement to genomics and transcriptomics. Multidimensional omics is becoming established to provide accurate and comprehensive state descriptions. This book covers the latest methodological developments for, and applications of integrative multi-omics in biomedical research.


Book
Radiation Response Biomarkers for Individualised Cancer Treatments
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Personalised medicine is the next step in healthcare, especially when applied to genetically diverse diseases such as cancers. Naturally, a host of methods need to evolve alongside this, in order to allow the practice and implementation of individual treatment regimens. One of the major tasks for the development of personalised treatment of cancer is the identification and validation of a comprehensive, robust, and reliable panel of biomarkers that guide the clinicians to provide the best treatment to patients. This is indeed important with regards to radiotherapy; not only do biomarkers allow for the assessment of treatability, tumour response, and the radiosensitivity of healthy tissue of the treated patient. Furthermore, biomarkers should allow for the evaluation of the risks of developing adverse late effects as a result of radiotherapy such as second cancers and non-cancer effects, for example cardiovascular injury and cataract formation. Knowledge of all of these factors would allow for the development of a tailored radiation therapy regime. This Special Issue of the Journal of Personalised Medicine covers the topic of Radiation Response Biomarkers in the context of individualised cancer treatments, and offers an insight into some of the further evolution of radiation response biomarkers, their usefulness in guiding clinicians, and their application in radiation therapy.


Book
Spumaretroviruses
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Foamy viruses, currently referred to as spumaretroviruses, are the most ancient retroviruses as evidenced by traces of viral sequences dispersed in all vertebrate classes from fish to mammals. Additionally, infectious foamy viruses circulate in a variety of mammalian species including simian, bovine, equine, caprine, and feline. Foamy viruses have many unique features which led to the division of the retrovirus family into two subfamilies, the Orthoretrovirinae and Spumaretrovirinae. In vitro, foamy viruses have a broad host range and in vivo, human infections have been described due to cross-species transmission from infected nonhuman primates. Thus far, there are no reports of virus-induced disease in humans or in the natural host species. These unique properties of foamy viruses have led researchers to develop foamy viruses as gene therapy vectors to study virus–virus and virus–host interactions for identifying factors involved in virus replication, transmission, and immune regulation that could influence potential clinical outcomes in humans as well as for using endogenous foamy virus sequences in the analysis of host species evolution.

Keywords

Medicine --- Neurosciences --- spumavirus --- feline illness --- proviral load --- neglected virus --- bovine foamy virus --- infectious clone --- particle release --- cell-free transmission --- foamy virus --- spumaretrovirus --- cross-species virus transmission --- zoonosis --- restriction factors --- immune responses --- FV vectors --- virus replication --- latent infection --- feline foamy virus --- epidemiology --- retrovirus --- Spumaretrovirus --- mountain lion --- Puma concolor --- ELISA --- protease --- reverse transcriptase --- RNase H --- reverse transcription --- antiviral drugs --- resistance --- simian foamy virus --- gibbon --- lesser apes --- co-evolution --- complete viral genome --- equine foamy virus --- isolation --- Japan --- sero-epidemiology --- reptile foamy virus --- endogenous foamy virus --- endogenous retrovirus --- ancient retroviruses --- co-speciation --- foamy virus-host interactions --- viral tropism --- infection --- kidney --- cats --- chronic kidney disease --- chronic renal disease --- integrase --- integration --- co-infections --- NHP --- pathogenesis --- zoonoses --- viral prevalence --- Neotropical primates --- free-living primates --- Brazil --- new world primates --- simian retrovirus --- BFV --- spuma virus --- model system --- animal model --- animal experiment --- miRNA function --- gene expression --- antiviral host restriction --- gene therapy --- in-vivo gene therapy --- hematopoietic stem and progenitor cells --- foamy virus vector --- pre-clinical canine model --- SCID-X1 --- innate sensing --- cGAS --- STING --- foamy viruses --- wild ruminants --- European bison --- red deer --- roe deer --- fallow deer --- seroreactivity --- inter-species transmission --- HSC --- gene marking --- FV gene transfer to HSCs --- gene therapy alternatives --- serotype --- high-throughput sequencing --- replication kinetics --- cytopathic effect --- reverse transcriptase activity --- miRNA expression --- virus-host-interaction --- miRNA target gene identification --- innate immunity --- ANKRD17 --- Bif1 (SH3GLB1) --- replication in vitro --- spumavirus --- feline illness --- proviral load --- neglected virus --- bovine foamy virus --- infectious clone --- particle release --- cell-free transmission --- foamy virus --- spumaretrovirus --- cross-species virus transmission --- zoonosis --- restriction factors --- immune responses --- FV vectors --- virus replication --- latent infection --- feline foamy virus --- epidemiology --- retrovirus --- Spumaretrovirus --- mountain lion --- Puma concolor --- ELISA --- protease --- reverse transcriptase --- RNase H --- reverse transcription --- antiviral drugs --- resistance --- simian foamy virus --- gibbon --- lesser apes --- co-evolution --- complete viral genome --- equine foamy virus --- isolation --- Japan --- sero-epidemiology --- reptile foamy virus --- endogenous foamy virus --- endogenous retrovirus --- ancient retroviruses --- co-speciation --- foamy virus-host interactions --- viral tropism --- infection --- kidney --- cats --- chronic kidney disease --- chronic renal disease --- integrase --- integration --- co-infections --- NHP --- pathogenesis --- zoonoses --- viral prevalence --- Neotropical primates --- free-living primates --- Brazil --- new world primates --- simian retrovirus --- BFV --- spuma virus --- model system --- animal model --- animal experiment --- miRNA function --- gene expression --- antiviral host restriction --- gene therapy --- in-vivo gene therapy --- hematopoietic stem and progenitor cells --- foamy virus vector --- pre-clinical canine model --- SCID-X1 --- innate sensing --- cGAS --- STING --- foamy viruses --- wild ruminants --- European bison --- red deer --- roe deer --- fallow deer --- seroreactivity --- inter-species transmission --- HSC --- gene marking --- FV gene transfer to HSCs --- gene therapy alternatives --- serotype --- high-throughput sequencing --- replication kinetics --- cytopathic effect --- reverse transcriptase activity --- miRNA expression --- virus-host-interaction --- miRNA target gene identification --- innate immunity --- ANKRD17 --- Bif1 (SH3GLB1) --- replication in vitro


Book
Spumaretroviruses
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Foamy viruses, currently referred to as spumaretroviruses, are the most ancient retroviruses as evidenced by traces of viral sequences dispersed in all vertebrate classes from fish to mammals. Additionally, infectious foamy viruses circulate in a variety of mammalian species including simian, bovine, equine, caprine, and feline. Foamy viruses have many unique features which led to the division of the retrovirus family into two subfamilies, the Orthoretrovirinae and Spumaretrovirinae. In vitro, foamy viruses have a broad host range and in vivo, human infections have been described due to cross-species transmission from infected nonhuman primates. Thus far, there are no reports of virus-induced disease in humans or in the natural host species. These unique properties of foamy viruses have led researchers to develop foamy viruses as gene therapy vectors to study virus–virus and virus–host interactions for identifying factors involved in virus replication, transmission, and immune regulation that could influence potential clinical outcomes in humans as well as for using endogenous foamy virus sequences in the analysis of host species evolution.

Keywords

Medicine --- Neurosciences --- spumavirus --- feline illness --- proviral load --- neglected virus --- bovine foamy virus --- infectious clone --- particle release --- cell-free transmission --- foamy virus --- spumaretrovirus --- cross-species virus transmission --- zoonosis --- restriction factors --- immune responses --- FV vectors --- virus replication --- latent infection --- feline foamy virus --- epidemiology --- retrovirus --- Spumaretrovirus --- mountain lion --- Puma concolor --- ELISA --- protease --- reverse transcriptase --- RNase H --- reverse transcription --- antiviral drugs --- resistance --- simian foamy virus --- gibbon --- lesser apes --- co-evolution --- complete viral genome --- equine foamy virus --- isolation --- Japan --- sero-epidemiology --- reptile foamy virus --- endogenous foamy virus --- endogenous retrovirus --- ancient retroviruses --- co-speciation --- foamy virus-host interactions --- viral tropism --- infection --- kidney --- cats --- chronic kidney disease --- chronic renal disease --- integrase --- integration --- co-infections --- NHP --- pathogenesis --- zoonoses --- viral prevalence --- Neotropical primates --- free-living primates --- Brazil --- new world primates --- simian retrovirus --- BFV --- spuma virus --- model system --- animal model --- animal experiment --- miRNA function --- gene expression --- antiviral host restriction --- gene therapy --- in-vivo gene therapy --- hematopoietic stem and progenitor cells --- foamy virus vector --- pre-clinical canine model --- SCID-X1 --- innate sensing --- cGAS --- STING --- foamy viruses --- wild ruminants --- European bison --- red deer --- roe deer --- fallow deer --- seroreactivity --- inter-species transmission --- HSC --- gene marking --- FV gene transfer to HSCs --- gene therapy alternatives --- serotype --- high-throughput sequencing --- replication kinetics --- cytopathic effect --- reverse transcriptase activity --- miRNA expression --- virus-host-interaction --- miRNA target gene identification --- innate immunity --- ANKRD17 --- Bif1 (SH3GLB1) --- replication in vitro


Book
Spumaretroviruses
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Foamy viruses, currently referred to as spumaretroviruses, are the most ancient retroviruses as evidenced by traces of viral sequences dispersed in all vertebrate classes from fish to mammals. Additionally, infectious foamy viruses circulate in a variety of mammalian species including simian, bovine, equine, caprine, and feline. Foamy viruses have many unique features which led to the division of the retrovirus family into two subfamilies, the Orthoretrovirinae and Spumaretrovirinae. In vitro, foamy viruses have a broad host range and in vivo, human infections have been described due to cross-species transmission from infected nonhuman primates. Thus far, there are no reports of virus-induced disease in humans or in the natural host species. These unique properties of foamy viruses have led researchers to develop foamy viruses as gene therapy vectors to study virus–virus and virus–host interactions for identifying factors involved in virus replication, transmission, and immune regulation that could influence potential clinical outcomes in humans as well as for using endogenous foamy virus sequences in the analysis of host species evolution.

Keywords

spumavirus --- feline illness --- proviral load --- neglected virus --- bovine foamy virus --- infectious clone --- particle release --- cell-free transmission --- foamy virus --- spumaretrovirus --- cross-species virus transmission --- zoonosis --- restriction factors --- immune responses --- FV vectors --- virus replication --- latent infection --- feline foamy virus --- epidemiology --- retrovirus --- Spumaretrovirus --- mountain lion --- Puma concolor --- ELISA --- protease --- reverse transcriptase --- RNase H --- reverse transcription --- antiviral drugs --- resistance --- simian foamy virus --- gibbon --- lesser apes --- co-evolution --- complete viral genome --- equine foamy virus --- isolation --- Japan --- sero-epidemiology --- reptile foamy virus --- endogenous foamy virus --- endogenous retrovirus --- ancient retroviruses --- co-speciation --- foamy virus-host interactions --- viral tropism --- infection --- kidney --- cats --- chronic kidney disease --- chronic renal disease --- integrase --- integration --- co-infections --- NHP --- pathogenesis --- zoonoses --- viral prevalence --- Neotropical primates --- free-living primates --- Brazil --- new world primates --- simian retrovirus --- BFV --- spuma virus --- model system --- animal model --- animal experiment --- miRNA function --- gene expression --- antiviral host restriction --- gene therapy --- in-vivo gene therapy --- hematopoietic stem and progenitor cells --- foamy virus vector --- pre-clinical canine model --- SCID-X1 --- innate sensing --- cGAS --- STING --- foamy viruses --- wild ruminants --- European bison --- red deer --- roe deer --- fallow deer --- seroreactivity --- inter-species transmission --- HSC --- gene marking --- FV gene transfer to HSCs --- gene therapy alternatives --- serotype --- high-throughput sequencing --- replication kinetics --- cytopathic effect --- reverse transcriptase activity --- miRNA expression --- virus-host-interaction --- miRNA target gene identification --- innate immunity --- ANKRD17 --- Bif1 (SH3GLB1) --- replication in vitro

Listing 1 - 8 of 8
Sort by