Narrow your search

Library

ULiège (2)

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

VIVES (1)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2021 (3)

2000 (1)

Listing 1 - 4 of 4
Sort by

Book
Properties of Transition Metals and Their Compounds at Extreme Conditions
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The characterization of the physical and chemical properties of transition metals and their compounds under extreme conditions of pressure and temperature has always attracted the interest of a wide scientific community. Their properties have numerous implications in fields ranging from solid-state physics, chemistry, and materials science to Earth and planetary science. The present Special Issue represents a good example of such a broad interest and shows some of the latest advancements in the investigation of transition metals under extreme conditions of pressure and temperature.

Keywords

Technology: general issues --- vanadate --- kagome compound --- high pressure --- X-ray diffraction --- equation of state --- iodate --- infrared spectroscopy --- phase transitions --- grain refinement --- mechanical properties --- commercial purity aluminum --- zirconium --- Nb3Sn --- local atomic structure --- XAFS --- melting curves --- laser-heated diamond anvil cell --- extreme conditions --- synchrotron radiation --- transition metals --- iridium --- laser heating --- density-functional theory --- melting --- radial-distribution function --- quantum molecular dynamics --- melting curve --- solid-solid phase transition boundary --- multi-phase materials --- phase relation --- Earth's core --- iron alloys --- high-pressure --- high-temperature --- thermodynamics --- eutectic spacing --- Al-Si alloy --- superheat --- electrical resistivity --- iron sulfides --- high temperature --- Ganymede --- thermal convection --- creep testing --- ME21 --- magnesium alloy --- size effects --- miniature specimen --- PbTe --- substitutional disorder --- thermal expansion --- bulk modulus --- atomic displacement --- low temperature --- compression --- Debye temperature --- vanadate --- kagome compound --- high pressure --- X-ray diffraction --- equation of state --- iodate --- infrared spectroscopy --- phase transitions --- grain refinement --- mechanical properties --- commercial purity aluminum --- zirconium --- Nb3Sn --- local atomic structure --- XAFS --- melting curves --- laser-heated diamond anvil cell --- extreme conditions --- synchrotron radiation --- transition metals --- iridium --- laser heating --- density-functional theory --- melting --- radial-distribution function --- quantum molecular dynamics --- melting curve --- solid-solid phase transition boundary --- multi-phase materials --- phase relation --- Earth's core --- iron alloys --- high-pressure --- high-temperature --- thermodynamics --- eutectic spacing --- Al-Si alloy --- superheat --- electrical resistivity --- iron sulfides --- high temperature --- Ganymede --- thermal convection --- creep testing --- ME21 --- magnesium alloy --- size effects --- miniature specimen --- PbTe --- substitutional disorder --- thermal expansion --- bulk modulus --- atomic displacement --- low temperature --- compression --- Debye temperature


Book
Mathematics of wave propagation
Author:
ISBN: 0691223378 Year: 2000 Publisher: Princeton, New Jersey : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Earthquakes, a plucked string, ocean waves crashing on the beach, the sound waves that allow us to recognize known voices. Waves are everywhere, and the propagation and classical properties of these apparently disparate phenomena can be described by the same mathematical methods: variational calculus, characteristics theory, and caustics. Taking a medium-by-medium approach, Julian Davis explains the mathematics needed to understand wave propagation in inviscid and viscous fluids, elastic solids, viscoelastic solids, and thermoelastic media, including hyperbolic partial differential equations and characteristics theory, which makes possible geometric solutions to nonlinear wave problems. The result is a clear and unified treatment of wave propagation that makes a diverse body of mathematics accessible to engineers, physicists, and applied mathematicians engaged in research on elasticity, aerodynamics, and fluid mechanics. This book will particularly appeal to those working across specializations and those who seek the truly interdisciplinary understanding necessary to fully grasp waves and their behavior. By proceeding from concrete phenomena (e.g., the Doppler effect, the motion of sinusoidal waves, energy dissipation in viscous fluids, thermal stress) rather than abstract mathematical principles, Davis also creates a one-stop reference that will be prized by students of continuum mechanics and by mathematicians needing information on the physics of waves.


Book
Properties of Transition Metals and Their Compounds at Extreme Conditions
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The characterization of the physical and chemical properties of transition metals and their compounds under extreme conditions of pressure and temperature has always attracted the interest of a wide scientific community. Their properties have numerous implications in fields ranging from solid-state physics, chemistry, and materials science to Earth and planetary science. The present Special Issue represents a good example of such a broad interest and shows some of the latest advancements in the investigation of transition metals under extreme conditions of pressure and temperature.


Book
Properties of Transition Metals and Their Compounds at Extreme Conditions
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The characterization of the physical and chemical properties of transition metals and their compounds under extreme conditions of pressure and temperature has always attracted the interest of a wide scientific community. Their properties have numerous implications in fields ranging from solid-state physics, chemistry, and materials science to Earth and planetary science. The present Special Issue represents a good example of such a broad interest and shows some of the latest advancements in the investigation of transition metals under extreme conditions of pressure and temperature.

Listing 1 - 4 of 4
Sort by