Listing 1 - 10 of 15 | << page >> |
Sort by
|
Choose an application
Ultrafine-grained metallic materials produced by severe plastic deformation methods are at the cutting edge of modern materials science. UFG-metals exhibit outstanding properties which make them very interesting for structural or functional engineering applications. Fifteen articles in this special issue address a broad variety of topics: New developments in severe plastic deformation techniques, advances in modeling and simulation of the severe plastic deformation processes, mechanical properties under monotonic and cyclic loading of homogenous and graded UFG structures, dominating deformation mechanisms in UFG materials, advances and strategies for high conductivity UFG-materials, correlation between severe plastic deformation parameters and resulting materials properties and peculiarities in the corrosion behavior of UFG materials. The book covers latest results on ultrafine-grained titanium, aluminum and copper alloys and on UFG iron and steels and thus provides a deep insight to current research activities in the field of ultrafine-grained metals.
steel --- corrosion --- mechanical poroperties --- micorstructure --- conductivity --- severe plastic deformation --- iron --- aluminium alloys --- bulk metallic glass --- ultrafine-grained metals --- titanium alloys --- microstructure
Choose an application
This book is a reprint of a special issue of Metals (ISSN 2075-4701), titled High Entropy Materials: Challenges and Prospects. It is a compilation of nine articles from different aspects of high-entropy materials. The book primarily focuses on high-entropy alloys, the first emergent high-entropy materials, but also covers high-entropy ceramics and high-entropy composites, which are the extensions of high-entropy alloys. The articles on high-entropy alloys cover some important facets in the field such as phase structures, mechanical properties, laser beam welding, design of soft magnetic alloys, and potential as biomaterials. In addition, there are one article introducing the potential of using high-entropy carbides as hard metals for machining, and one another on high-entropy composite studying the microstructures and tribological properties of the FeCoNiCuAl-TiC composite. The goal of this reprinted book is essentially two-fold. In the first place, it offers a platform for researchers in the broad field of high-entropy materials to communicate their views and recent research on the subject. Next, it reports challenges in the sub-fields of high-entropy materials and inspires researchers to continue to practice diligence to resolve these challenges and advance high-entropy materials solidly. We hope that readers in the field feel encouraged, inspired, and challenged by the book, and readers outside the field can grasp some basic ideals of high-entropy materials and their potential to the society as a family of novel materials.
Technology: general issues --- high-entropy alloys --- intermetallic --- alloy design --- phase stability --- high-entropy alloy --- soft magnetic properties --- mechanical properties --- saturation magnetostriction coefficient --- face-centered cubic (FCC) structure --- high entropy alloys --- laser beam welding --- microstructure --- TiC --- tribological properties --- wear mechanism --- refractory metals --- bulk metallic glass (BMG) --- fatigue behavior --- industrial-grade zirconium raw material --- carbide --- high-entropy carbides --- binders --- high-entropy hardmetals --- biomedical materials --- n/a
Choose an application
This book is a reprint of a special issue of Metals (ISSN 2075-4701), titled High Entropy Materials: Challenges and Prospects. It is a compilation of nine articles from different aspects of high-entropy materials. The book primarily focuses on high-entropy alloys, the first emergent high-entropy materials, but also covers high-entropy ceramics and high-entropy composites, which are the extensions of high-entropy alloys. The articles on high-entropy alloys cover some important facets in the field such as phase structures, mechanical properties, laser beam welding, design of soft magnetic alloys, and potential as biomaterials. In addition, there are one article introducing the potential of using high-entropy carbides as hard metals for machining, and one another on high-entropy composite studying the microstructures and tribological properties of the FeCoNiCuAl-TiC composite. The goal of this reprinted book is essentially two-fold. In the first place, it offers a platform for researchers in the broad field of high-entropy materials to communicate their views and recent research on the subject. Next, it reports challenges in the sub-fields of high-entropy materials and inspires researchers to continue to practice diligence to resolve these challenges and advance high-entropy materials solidly. We hope that readers in the field feel encouraged, inspired, and challenged by the book, and readers outside the field can grasp some basic ideals of high-entropy materials and their potential to the society as a family of novel materials.
high-entropy alloys --- intermetallic --- alloy design --- phase stability --- high-entropy alloy --- soft magnetic properties --- mechanical properties --- saturation magnetostriction coefficient --- face-centered cubic (FCC) structure --- high entropy alloys --- laser beam welding --- microstructure --- TiC --- tribological properties --- wear mechanism --- refractory metals --- bulk metallic glass (BMG) --- fatigue behavior --- industrial-grade zirconium raw material --- carbide --- high-entropy carbides --- binders --- high-entropy hardmetals --- biomedical materials --- n/a
Choose an application
This book is a reprint of a special issue of Metals (ISSN 2075-4701), titled High Entropy Materials: Challenges and Prospects. It is a compilation of nine articles from different aspects of high-entropy materials. The book primarily focuses on high-entropy alloys, the first emergent high-entropy materials, but also covers high-entropy ceramics and high-entropy composites, which are the extensions of high-entropy alloys. The articles on high-entropy alloys cover some important facets in the field such as phase structures, mechanical properties, laser beam welding, design of soft magnetic alloys, and potential as biomaterials. In addition, there are one article introducing the potential of using high-entropy carbides as hard metals for machining, and one another on high-entropy composite studying the microstructures and tribological properties of the FeCoNiCuAl-TiC composite. The goal of this reprinted book is essentially two-fold. In the first place, it offers a platform for researchers in the broad field of high-entropy materials to communicate their views and recent research on the subject. Next, it reports challenges in the sub-fields of high-entropy materials and inspires researchers to continue to practice diligence to resolve these challenges and advance high-entropy materials solidly. We hope that readers in the field feel encouraged, inspired, and challenged by the book, and readers outside the field can grasp some basic ideals of high-entropy materials and their potential to the society as a family of novel materials.
Technology: general issues --- high-entropy alloys --- intermetallic --- alloy design --- phase stability --- high-entropy alloy --- soft magnetic properties --- mechanical properties --- saturation magnetostriction coefficient --- face-centered cubic (FCC) structure --- high entropy alloys --- laser beam welding --- microstructure --- TiC --- tribological properties --- wear mechanism --- refractory metals --- bulk metallic glass (BMG) --- fatigue behavior --- industrial-grade zirconium raw material --- carbide --- high-entropy carbides --- binders --- high-entropy hardmetals --- biomedical materials
Choose an application
The Special Issue “Recent Advancements in Metallic Glasses” presents ten original papers, considering both scientific and application issues related to metallic glasses. The papers are devoted to general consideration of the formation and defects of the glassy structure, defect evolution due to heat treatment, deformation behavior upon compression and high-pressure torsion, amorphous-crystalline transformation, hydrogenation behavior, and biomedical applications.
Information technology industries --- metallic glasses --- defects --- structural relaxation --- heat effects --- shear elasticity --- interstitialcy theory --- mechanical spectroscopy --- mixing enthalpy --- Kohlrausch-Williams-Watts equation --- structural heterogeneity --- metallic glass --- twin roll casting --- GFA --- MicroCT --- hydrogen --- indentation --- pop-in --- plasticity --- nanoglasses --- structure evolution --- properties --- bulk metallic glass --- shear band --- dislocation theory --- scanning white light interferometry --- high-pressure torsion --- severe plastic deformation --- transmitting electron microscopy --- X-ray diffraction --- differential scanning calorimetry --- free volume --- shear modulus --- composite --- amorphous alloy --- nanolaminate --- hardness --- crack resistance --- nanostructure --- HPT deformation --- metastable phases --- metallic glasses --- defects --- structural relaxation --- heat effects --- shear elasticity --- interstitialcy theory --- mechanical spectroscopy --- mixing enthalpy --- Kohlrausch-Williams-Watts equation --- structural heterogeneity --- metallic glass --- twin roll casting --- GFA --- MicroCT --- hydrogen --- indentation --- pop-in --- plasticity --- nanoglasses --- structure evolution --- properties --- bulk metallic glass --- shear band --- dislocation theory --- scanning white light interferometry --- high-pressure torsion --- severe plastic deformation --- transmitting electron microscopy --- X-ray diffraction --- differential scanning calorimetry --- free volume --- shear modulus --- composite --- amorphous alloy --- nanolaminate --- hardness --- crack resistance --- nanostructure --- HPT deformation --- metastable phases
Choose an application
The Special Issue “Recent Advancements in Metallic Glasses” presents ten original papers, considering both scientific and application issues related to metallic glasses. The papers are devoted to general consideration of the formation and defects of the glassy structure, defect evolution due to heat treatment, deformation behavior upon compression and high-pressure torsion, amorphous-crystalline transformation, hydrogenation behavior, and biomedical applications.
Information technology industries --- metallic glasses --- defects --- structural relaxation --- heat effects --- shear elasticity --- interstitialcy theory --- mechanical spectroscopy --- mixing enthalpy --- Kohlrausch–Williams–Watts equation --- structural heterogeneity --- metallic glass --- twin roll casting --- GFA --- MicroCT --- hydrogen --- indentation --- pop-in --- plasticity --- nanoglasses --- structure evolution --- properties --- bulk metallic glass --- shear band --- dislocation theory --- scanning white light interferometry --- high-pressure torsion --- severe plastic deformation --- transmitting electron microscopy --- X-ray diffraction --- differential scanning calorimetry --- free volume --- shear modulus --- composite --- amorphous alloy --- nanolaminate --- hardness --- crack resistance --- nanostructure --- HPT deformation --- metastable phases --- n/a --- Kohlrausch-Williams-Watts equation
Choose an application
Ultrasonic waves are nowadays used for multiple purposes including both low-intensity/high frequency and high-intensity/low-frequency ultrasound. Low-intensity ultrasound transmits energy through the medium in order to obtain information about the medium or to convey information through the medium. It is successfully used in non-destructive inspection, ultrasonic dynamic analysis, ultrasonic rheology, ultrasonic spectroscopy of materials, process monitoring, applications in civil engineering, aerospace and geological materials and structures, and in the characterization of biological media. Nowadays, it is an essential tool for assessing metals, plastics, aerospace composites, wood, concrete, and cement. High-intensity ultrasound deliberately affects the propagation medium through the high local temperatures and pressures generated. It is used in industrial processes such as welding, cleaning, emulsification, atomization, etc.; chemical reactions and reactor induced by ultrasonic waves; synthesis of organic and inorganic materials; microstructural effects; heat generation; accelerated material characterization by ultrasonic fatigue testing; food processing; and environmental protection. This book collects eleven papers, one review, and ten research papers with the aim to present recent advances in ultrasonic wave propagation applied for the characterization or the processing of materials. Both fundamental science and applications of ultrasound in the field of material characterization and material processing have been gathered.
ultrasonic lens --- axicon lens --- focused ultrasound --- transcranial ultrasound --- non-destructive inspection --- damage identification --- topology optimization --- ultrasonic wave propagation --- ultrasonic visualization --- L-shaped ultrasonic wave guide rod --- ultrasonic bending vibration --- 2A14 aluminum alloy --- solidification structure --- composition segregation --- 1060 aluminum alloy --- twin-roll casting --- microstructure --- mechanical properties --- concrete --- mesostructure --- Lamb wave --- heterogeneity --- Monte Carlo method --- SHM --- ultrasound --- time of flight --- reinforcement --- resin transfer molding (RTM) --- permeability --- liquid composite molding --- material characterization --- composite manufacturing --- liquid penetration --- ultrasound transmission --- capillary penetration --- porous sheets --- bulk metallic glass --- ultrasonic assisted turning --- finite element analysis --- cutting force --- guided waves --- setting time --- mortar and concrete --- early age --- thermoplastic composites --- ultrasonic joints --- resistance heating --- elastography --- viscoelastic properties --- creep --- stress relaxation --- n/a
Choose an application
The Special Issue “Recent Advancements in Metallic Glasses” presents ten original papers, considering both scientific and application issues related to metallic glasses. The papers are devoted to general consideration of the formation and defects of the glassy structure, defect evolution due to heat treatment, deformation behavior upon compression and high-pressure torsion, amorphous-crystalline transformation, hydrogenation behavior, and biomedical applications.
metallic glasses --- defects --- structural relaxation --- heat effects --- shear elasticity --- interstitialcy theory --- mechanical spectroscopy --- mixing enthalpy --- Kohlrausch–Williams–Watts equation --- structural heterogeneity --- metallic glass --- twin roll casting --- GFA --- MicroCT --- hydrogen --- indentation --- pop-in --- plasticity --- nanoglasses --- structure evolution --- properties --- bulk metallic glass --- shear band --- dislocation theory --- scanning white light interferometry --- high-pressure torsion --- severe plastic deformation --- transmitting electron microscopy --- X-ray diffraction --- differential scanning calorimetry --- free volume --- shear modulus --- composite --- amorphous alloy --- nanolaminate --- hardness --- crack resistance --- nanostructure --- HPT deformation --- metastable phases --- n/a --- Kohlrausch-Williams-Watts equation
Choose an application
Ultrasonic waves are nowadays used for multiple purposes including both low-intensity/high frequency and high-intensity/low-frequency ultrasound. Low-intensity ultrasound transmits energy through the medium in order to obtain information about the medium or to convey information through the medium. It is successfully used in non-destructive inspection, ultrasonic dynamic analysis, ultrasonic rheology, ultrasonic spectroscopy of materials, process monitoring, applications in civil engineering, aerospace and geological materials and structures, and in the characterization of biological media. Nowadays, it is an essential tool for assessing metals, plastics, aerospace composites, wood, concrete, and cement. High-intensity ultrasound deliberately affects the propagation medium through the high local temperatures and pressures generated. It is used in industrial processes such as welding, cleaning, emulsification, atomization, etc.; chemical reactions and reactor induced by ultrasonic waves; synthesis of organic and inorganic materials; microstructural effects; heat generation; accelerated material characterization by ultrasonic fatigue testing; food processing; and environmental protection. This book collects eleven papers, one review, and ten research papers with the aim to present recent advances in ultrasonic wave propagation applied for the characterization or the processing of materials. Both fundamental science and applications of ultrasound in the field of material characterization and material processing have been gathered.
Technology: general issues --- ultrasonic lens --- axicon lens --- focused ultrasound --- transcranial ultrasound --- non-destructive inspection --- damage identification --- topology optimization --- ultrasonic wave propagation --- ultrasonic visualization --- L-shaped ultrasonic wave guide rod --- ultrasonic bending vibration --- 2A14 aluminum alloy --- solidification structure --- composition segregation --- 1060 aluminum alloy --- twin-roll casting --- microstructure --- mechanical properties --- concrete --- mesostructure --- Lamb wave --- heterogeneity --- Monte Carlo method --- SHM --- ultrasound --- time of flight --- reinforcement --- resin transfer molding (RTM) --- permeability --- liquid composite molding --- material characterization --- composite manufacturing --- liquid penetration --- ultrasound transmission --- capillary penetration --- porous sheets --- bulk metallic glass --- ultrasonic assisted turning --- finite element analysis --- cutting force --- guided waves --- setting time --- mortar and concrete --- early age --- thermoplastic composites --- ultrasonic joints --- resistance heating --- elastography --- viscoelastic properties --- creep --- stress relaxation --- ultrasonic lens --- axicon lens --- focused ultrasound --- transcranial ultrasound --- non-destructive inspection --- damage identification --- topology optimization --- ultrasonic wave propagation --- ultrasonic visualization --- L-shaped ultrasonic wave guide rod --- ultrasonic bending vibration --- 2A14 aluminum alloy --- solidification structure --- composition segregation --- 1060 aluminum alloy --- twin-roll casting --- microstructure --- mechanical properties --- concrete --- mesostructure --- Lamb wave --- heterogeneity --- Monte Carlo method --- SHM --- ultrasound --- time of flight --- reinforcement --- resin transfer molding (RTM) --- permeability --- liquid composite molding --- material characterization --- composite manufacturing --- liquid penetration --- ultrasound transmission --- capillary penetration --- porous sheets --- bulk metallic glass --- ultrasonic assisted turning --- finite element analysis --- cutting force --- guided waves --- setting time --- mortar and concrete --- early age --- thermoplastic composites --- ultrasonic joints --- resistance heating --- elastography --- viscoelastic properties --- creep --- stress relaxation
Choose an application
Ultrasonic waves are nowadays used for multiple purposes including both low-intensity/high frequency and high-intensity/low-frequency ultrasound. Low-intensity ultrasound transmits energy through the medium in order to obtain information about the medium or to convey information through the medium. It is successfully used in non-destructive inspection, ultrasonic dynamic analysis, ultrasonic rheology, ultrasonic spectroscopy of materials, process monitoring, applications in civil engineering, aerospace and geological materials and structures, and in the characterization of biological media. Nowadays, it is an essential tool for assessing metals, plastics, aerospace composites, wood, concrete, and cement. High-intensity ultrasound deliberately affects the propagation medium through the high local temperatures and pressures generated. It is used in industrial processes such as welding, cleaning, emulsification, atomization, etc.; chemical reactions and reactor induced by ultrasonic waves; synthesis of organic and inorganic materials; microstructural effects; heat generation; accelerated material characterization by ultrasonic fatigue testing; food processing; and environmental protection. This book collects eleven papers, one review, and ten research papers with the aim to present recent advances in ultrasonic wave propagation applied for the characterization or the processing of materials. Both fundamental science and applications of ultrasound in the field of material characterization and material processing have been gathered.
Technology: general issues --- ultrasonic lens --- axicon lens --- focused ultrasound --- transcranial ultrasound --- non-destructive inspection --- damage identification --- topology optimization --- ultrasonic wave propagation --- ultrasonic visualization --- L-shaped ultrasonic wave guide rod --- ultrasonic bending vibration --- 2A14 aluminum alloy --- solidification structure --- composition segregation --- 1060 aluminum alloy --- twin-roll casting --- microstructure --- mechanical properties --- concrete --- mesostructure --- Lamb wave --- heterogeneity --- Monte Carlo method --- SHM --- ultrasound --- time of flight --- reinforcement --- resin transfer molding (RTM) --- permeability --- liquid composite molding --- material characterization --- composite manufacturing --- liquid penetration --- ultrasound transmission --- capillary penetration --- porous sheets --- bulk metallic glass --- ultrasonic assisted turning --- finite element analysis --- cutting force --- guided waves --- setting time --- mortar and concrete --- early age --- thermoplastic composites --- ultrasonic joints --- resistance heating --- elastography --- viscoelastic properties --- creep --- stress relaxation --- n/a
Listing 1 - 10 of 15 | << page >> |
Sort by
|