Narrow your search
Listing 1 - 6 of 6
Sort by

Dissertation
Travail de fin d'études / Projet de fin d'études : Evaluation of energy performance and carbon emission of vacuum insulated glazing versus triple glazing in an office building in Belgium
Authors: --- --- --- ---
Year: 2022 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

The United Nations Environmental Programme published in 2019 that 39 % of the energy-related carbon dioxide comes from the construction sector. Thereby, the regulation of the energy performance of the buildings becomes stricter, which leads to new technologies of construction components, like today's vacuum insulated glazing.

The knowledge and publications of vacuum insulated glazing are limited, and few multi-criteria comparisons are given. Therefore, this thesis compares vacuum insulated glazing in today’s and tomorrow’s production to triple glazing, following three criteria: energy performance, carbon emission, and cost. The glazings considered are produced by AGC Glass Europe. The analysis of variations in energy use is carried out with the help of a building energy model on EnergyPlus with DesignBuilder of the case study ‘t Centrum in Westerlo. The energy model’s robustness is proven with calibration, sensitivity and uncertainty analyses.
Further, the carbon emission is calculated based on the environmental product declaration and the energy emissions. Meanwhile, the cost is analysed using different energy cost scenarios and the carbon tax scenarios discussed in Belgium in 2017. The work is dedicated, first, to the architects and individuals involved in the construction industry in order to foster more responsible choices, second, to the AGC Glass and, third, to any individual wanting to understand the new glazing technology.

A total energy load reduction of 1.12% is found for the vacuum insulated glazing in tomorrow’s production. Yet, the vacuum insulated glazing of today leads to the lowest cooling load and the least overheating hours. The energy load is discovered to represent 96% of the carbon emission, leading the vacuum insulated glazing of tomorrow to be the less polluting in a building’s life cycle with a total of 550,867 kg eq. CO2. Meanwhile, the glazing by itself has the highest carbon emission. Vacuum insulated glazing of today has the lowest carbon footprint, offering a 36% reduction thanks to the reuse of the material. The carbon tax represents 54-87%, the energy cost 5-38%, and the glazing 2.3 – 29.46% of the total cost depending on the interest and taxation scenario. Still, triple glazing is the cheapest during its life cycle with a total cost of €8,714,212.

In conclusion, the vacuum insulated glazing of tomorrow's production is the most carbon and energy-efficient choice, while triple glazing is the most cost-efficient. However, glazing must be chosen on the basis of the importance of each criterion for the end-user. Le programme environnemental des Nations Unies a montré en 2019 que 39 % du dioxyde de carbone lié aux énergies proviennent du secteur de la construction, ce qui rend les réglementations des performances énergétiques des bâtiments plus strictes. Ainsi, de nouvelles technologies apparaissent dans ce domaine, par exemple le vitrage sous vide, notamment celui produit par AGC Glass Europe.

Or, la connaissance sur ces vitrages est limitée. Par conséquent, cette thèse compare le vitrage sous vide en production d’aujourd’hui et de demain au triple vitrage. Ainsi, le travail est premièrement dédié aux architectes, au producteur AGC Glass, aux autres acteurs de la construction, mais aussi toute personne voulant comprendre cette nouvelle technologie. Les critères de comparaison sont la performance énergétique, l’émission de carbone et le coût. L’analyse de la variation des performances énergiques est faite à l’aide d’un modèle énergétique Energyplus avec DesignBuilder pour le cas d’étude 't Centrum à Westerlo. Une calibration ainsi que des études de sensibilité et d’incertitude sont effectuées pour renforcer ce modèle. De plus, le calcul des émissions de carbone est établi sur les déclarations environnementales des produits et sur les émissions énergétiques. Par ailleurs, le coût est analysé en utilisant différents scenarios de coût d’énergie et de potentielle tarification de carbone.

Il est démontré que le vitrage sous vide de demain induit une réduction de la charge énergétique totale de 1.12%. Le vitrage sous vide d’aujourd’hui possède lui une charge de refroidissement plus petite et provoque moins d’heures de surchauffe. Puisque l’énergie représente 96% de l’émission de carbone, le vitrage sous vide de demain est le moins polluant avec un total de 550,867 kg eq. CO2. L’empreinte carbone la plus basse est toutefois celle du vitrage sous vide d’aujourd'hui seul, qui offre une réduction de 36% grâce à ses capacités de recyclage. En termes de coût total, 54 à 87% sont dédiés à la taxation carbone, 5 à 38% au coût d’énergie et 2.3 à 29.46% au vitrage selon les scénarios étudiés. Néanmoins, le triple vitrage demeure le plus économique durant sa durée de vie avec un coût total de €8,714,212.
Pour conclure, le vitrage sous vide de demain constitue le meilleur choix en termes d’efficacité énergétique et d’empreinte carbone, mais reste onéreux. Ainsi, le vitrage doit être choisi selon l’importance donnée à chaque critère par l’utilisateur d’après les conclusions de ce travail.


Book
Sustainable Building and Indoor Air Quality
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue addresses a topic of great contemporary relevance; in developed countries, most of peoples’ time is spent indoors and, depending on each person, the presence in the home ranges from 60% to 90% of the day, and 30% of that time is spent sleeping. Taking into account these data, indoor residential environments have a direct influence on human health. In addition to this, in developing countries, significant levels of indoor pollution make housing unsafe, with a detrimental impact on the health of inhabitants. Housing is therefore a key health factor for people all over the world, and various parameters such as air quality, ventilation, hygrothermal comfort, lighting, physical environment, and building efficiency, among others, can contribute to healthy architecture, and the conditions that can result from the poor application of these parameters.

Keywords

Technology: general issues --- vernacular architecture --- sustainability --- energy efficiency --- history --- statistics --- society --- acoustics --- environmental quality --- learning space --- occupant comfort --- sustainable architecture --- sustainable building --- visual comfort --- thermal comfort --- ventilation comfort --- VOCs --- polymer-based items --- indoor air quality --- test emission chamber --- exposure scenario --- natural lighting --- artificial lighting --- indoor lighting design --- chronodisruption --- circadian rhythms --- daylighting --- sustainable lighting design --- LED luminaires --- indoor environment quality --- classroom lighting --- sustainable development --- desalination --- reverse osmosis --- renewable energies --- environmental impacts --- decision support systems --- types of contract --- in-vehicle air quality --- pollution model --- thermal environment --- solar radiation --- VOCs exposure --- CFD --- environmental health --- building energy simulation --- water flow glazing --- experimental validation --- schools --- heat perception --- user’s perception --- qualitative technique --- POE --- weather file management --- weather datasets --- weather stations --- sensitivity analysis of weather parameters --- thermal zone temperature --- building energy management --- unitized facade --- Water Flow Glazing --- mean radiant temperature --- final energy consumption --- Artificial Neural Network (ANN) --- Global Data Assimilation System (GDAS) --- Numerical Weather Prediction (NWP) --- photovoltaic power --- weather data --- facility management --- construction materials --- “smelly buildings” --- Belgrade --- Serbia --- Mexico --- energy simulation --- building energy model --- Open Studio --- SGSAVE --- NOM-020-ENER-2011 --- climate zoning --- traditional construction systems --- social housing --- verification method --- climate change --- global warming --- carbon footprint --- GHG emissions --- climate emergency --- hydrogen --- PEM fuel cells --- cogeneration --- building sustainability --- energy saving --- hygrothermal comfort --- indoor green --- vertical greenery --- cost-benefit-ratio --- sick leave --- absenteeism --- alternative quantification method


Book
Empowering Communities, Beyond Energy Scarcity BIWAES 2021 Biennial International Workshop Advances in Energy Studies
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on the much-needed efforts to design sustainable, well-being-oriented economies, based on appropriate energy use in all sectors of a country´s development. Carbon neutrality, energy efficiency and effectiveness, renewable energies, circular economy strategies, environmental consequences of energy use, engagement and empowerment of local communities in decision making, energy and environmental impacts of consumer behavior, and finally science-based approaches towards sustainable production and consumption are the main focus of the research activities described within this book. An effort to go beyond energy scarcity, to promote energy communities, to explore new technologies, and overall, to understand and address the population-lifestyle-energy nexus towards increased and shared well-being is the final result jointly provided by the book authors. All in all, the aim is for the book to be the starting point of a deeper research and understanding of the importance of a radical improvement in energy use in society, beyond considering energy as just a resource in the world market. Circular economy aspects are also investigated, showing the energy saving potential associated with the appropriate design and recovery of material resources.

Keywords

energy consumption for heating --- CO2 emissions --- income --- buildings --- cities --- Spain --- emissions --- CO2 --- GWP --- functional unit --- natural gas --- SOFC --- optimal layout --- wake effect --- fluctuation --- wind farm --- ramping rate --- energy policy investments --- cost-benefit analysis --- social discount rate --- dual discounting --- energy transition index --- energy consumer --- behavioural model --- consumer segmentation --- socioeconomic characteristics --- end user profile --- energy awareness --- electricity --- efficiency --- multifractal detrended fluctuation analysis --- multifractality --- MLM --- rolling window --- smart grids --- demand response --- island communities --- social acceptance --- technology readiness --- sustainability --- Italy --- Ireland --- multi-regional input–output --- nexus --- trade --- Belt and Road --- renewable energy --- potential --- Indonesia --- literature review --- 100% renewables --- scenario --- energy savings --- circular economy --- construction and demolition waste --- recycled aggregates --- agri-food by-products --- urban building energy model --- UBEM --- level of detail --- LOD --- shadowing --- thermal zoning --- s-LCA --- LCA --- energy communities --- empowerment --- energy justice --- resource sustainability --- exergy --- exergy cost accounting --- exergy cost of biological resources --- decarbonisation --- climate neutrality --- industrial energy saving --- strategic decision making --- net-zero --- road mapping --- energy efficiency --- ideal mix --- sustainability strategy --- energy efficiency index --- n/a --- multi-regional input-output


Book
Sustainable Building and Indoor Air Quality
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue addresses a topic of great contemporary relevance; in developed countries, most of peoples’ time is spent indoors and, depending on each person, the presence in the home ranges from 60% to 90% of the day, and 30% of that time is spent sleeping. Taking into account these data, indoor residential environments have a direct influence on human health. In addition to this, in developing countries, significant levels of indoor pollution make housing unsafe, with a detrimental impact on the health of inhabitants. Housing is therefore a key health factor for people all over the world, and various parameters such as air quality, ventilation, hygrothermal comfort, lighting, physical environment, and building efficiency, among others, can contribute to healthy architecture, and the conditions that can result from the poor application of these parameters.

Keywords

vernacular architecture --- sustainability --- energy efficiency --- history --- statistics --- society --- acoustics --- environmental quality --- learning space --- occupant comfort --- sustainable architecture --- sustainable building --- visual comfort --- thermal comfort --- ventilation comfort --- VOCs --- polymer-based items --- indoor air quality --- test emission chamber --- exposure scenario --- natural lighting --- artificial lighting --- indoor lighting design --- chronodisruption --- circadian rhythms --- daylighting --- sustainable lighting design --- LED luminaires --- indoor environment quality --- classroom lighting --- sustainable development --- desalination --- reverse osmosis --- renewable energies --- environmental impacts --- decision support systems --- types of contract --- in-vehicle air quality --- pollution model --- thermal environment --- solar radiation --- VOCs exposure --- CFD --- environmental health --- building energy simulation --- water flow glazing --- experimental validation --- schools --- heat perception --- user’s perception --- qualitative technique --- POE --- weather file management --- weather datasets --- weather stations --- sensitivity analysis of weather parameters --- thermal zone temperature --- building energy management --- unitized facade --- Water Flow Glazing --- mean radiant temperature --- final energy consumption --- Artificial Neural Network (ANN) --- Global Data Assimilation System (GDAS) --- Numerical Weather Prediction (NWP) --- photovoltaic power --- weather data --- facility management --- construction materials --- “smelly buildings” --- Belgrade --- Serbia --- Mexico --- energy simulation --- building energy model --- Open Studio --- SGSAVE --- NOM-020-ENER-2011 --- climate zoning --- traditional construction systems --- social housing --- verification method --- climate change --- global warming --- carbon footprint --- GHG emissions --- climate emergency --- hydrogen --- PEM fuel cells --- cogeneration --- building sustainability --- energy saving --- hygrothermal comfort --- indoor green --- vertical greenery --- cost-benefit-ratio --- sick leave --- absenteeism --- alternative quantification method


Book
Empowering Communities, Beyond Energy Scarcity BIWAES 2021 Biennial International Workshop Advances in Energy Studies
Authors: --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on the much-needed efforts to design sustainable, well-being-oriented economies, based on appropriate energy use in all sectors of a country´s development. Carbon neutrality, energy efficiency and effectiveness, renewable energies, circular economy strategies, environmental consequences of energy use, engagement and empowerment of local communities in decision making, energy and environmental impacts of consumer behavior, and finally science-based approaches towards sustainable production and consumption are the main focus of the research activities described within this book. An effort to go beyond energy scarcity, to promote energy communities, to explore new technologies, and overall, to understand and address the population-lifestyle-energy nexus towards increased and shared well-being is the final result jointly provided by the book authors. All in all, the aim is for the book to be the starting point of a deeper research and understanding of the importance of a radical improvement in energy use in society, beyond considering energy as just a resource in the world market. Circular economy aspects are also investigated, showing the energy saving potential associated with the appropriate design and recovery of material resources.

Keywords

Research & information: general --- Physics --- energy consumption for heating --- CO2 emissions --- income --- buildings --- cities --- Spain --- emissions --- CO2 --- GWP --- functional unit --- natural gas --- SOFC --- optimal layout --- wake effect --- fluctuation --- wind farm --- ramping rate --- energy policy investments --- cost-benefit analysis --- social discount rate --- dual discounting --- energy transition index --- energy consumer --- behavioural model --- consumer segmentation --- socioeconomic characteristics --- end user profile --- energy awareness --- electricity --- efficiency --- multifractal detrended fluctuation analysis --- multifractality --- MLM --- rolling window --- smart grids --- demand response --- island communities --- social acceptance --- technology readiness --- sustainability --- Italy --- Ireland --- multi-regional input-output --- nexus --- trade --- Belt and Road --- renewable energy --- potential --- Indonesia --- literature review --- 100% renewables --- scenario --- energy savings --- circular economy --- construction and demolition waste --- recycled aggregates --- agri-food by-products --- urban building energy model --- UBEM --- level of detail --- LOD --- shadowing --- thermal zoning --- s-LCA --- LCA --- energy communities --- empowerment --- energy justice --- resource sustainability --- exergy --- exergy cost accounting --- exergy cost of biological resources --- decarbonisation --- climate neutrality --- industrial energy saving --- strategic decision making --- net-zero --- road mapping --- energy efficiency --- ideal mix --- sustainability strategy --- energy efficiency index


Book
Sustainable Building and Indoor Air Quality
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue addresses a topic of great contemporary relevance; in developed countries, most of peoples’ time is spent indoors and, depending on each person, the presence in the home ranges from 60% to 90% of the day, and 30% of that time is spent sleeping. Taking into account these data, indoor residential environments have a direct influence on human health. In addition to this, in developing countries, significant levels of indoor pollution make housing unsafe, with a detrimental impact on the health of inhabitants. Housing is therefore a key health factor for people all over the world, and various parameters such as air quality, ventilation, hygrothermal comfort, lighting, physical environment, and building efficiency, among others, can contribute to healthy architecture, and the conditions that can result from the poor application of these parameters.

Keywords

Technology: general issues --- vernacular architecture --- sustainability --- energy efficiency --- history --- statistics --- society --- acoustics --- environmental quality --- learning space --- occupant comfort --- sustainable architecture --- sustainable building --- visual comfort --- thermal comfort --- ventilation comfort --- VOCs --- polymer-based items --- indoor air quality --- test emission chamber --- exposure scenario --- natural lighting --- artificial lighting --- indoor lighting design --- chronodisruption --- circadian rhythms --- daylighting --- sustainable lighting design --- LED luminaires --- indoor environment quality --- classroom lighting --- sustainable development --- desalination --- reverse osmosis --- renewable energies --- environmental impacts --- decision support systems --- types of contract --- in-vehicle air quality --- pollution model --- thermal environment --- solar radiation --- VOCs exposure --- CFD --- environmental health --- building energy simulation --- water flow glazing --- experimental validation --- schools --- heat perception --- user’s perception --- qualitative technique --- POE --- weather file management --- weather datasets --- weather stations --- sensitivity analysis of weather parameters --- thermal zone temperature --- building energy management --- unitized facade --- Water Flow Glazing --- mean radiant temperature --- final energy consumption --- Artificial Neural Network (ANN) --- Global Data Assimilation System (GDAS) --- Numerical Weather Prediction (NWP) --- photovoltaic power --- weather data --- facility management --- construction materials --- “smelly buildings” --- Belgrade --- Serbia --- Mexico --- energy simulation --- building energy model --- Open Studio --- SGSAVE --- NOM-020-ENER-2011 --- climate zoning --- traditional construction systems --- social housing --- verification method --- climate change --- global warming --- carbon footprint --- GHG emissions --- climate emergency --- hydrogen --- PEM fuel cells --- cogeneration --- building sustainability --- energy saving --- hygrothermal comfort --- indoor green --- vertical greenery --- cost-benefit-ratio --- sick leave --- absenteeism --- alternative quantification method

Listing 1 - 6 of 6
Sort by