Narrow your search

Library

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

VIVES (2)

FARO (1)

ULB (1)

ULiège (1)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2020 (3)

2013 (1)

Listing 1 - 4 of 4
Sort by

Book
Knots.
Authors: --- ---
ISSN: 01790986 ISBN: 3110270781 9783110270785 9783110270747 3110270749 Year: 2013 Volume: 5 Publisher: Berlin Boston

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is an introduction to classical knot theory. Topics covered include: different constructions of knots, knot diagrams, knot groups, fibred knots, characterisation of torus knots, prime decomposition of knots, cyclic coverings and Alexander polynomials and modules together with the free differential calculus, braids, branched coverings and knots, Montesinos links, representations of knot groups, surgery of 3-manifolds and knots, Jones and HOMFLYPT polynomials. Knot theory has expanded enormously since the first edition of this book published in 1985. In this third completely revised and extended edition a chapter about bridge number and companionship of knots has been added. The book contains many figures and some tables of invariants of knots. This comprehensive account is an indispensable reference source for anyone interested in both classical and modern knot theory. Most of the topics considered in the book are developed in detail; only the main properties of fundamental groups, covering spaces and some basic results of combinatorial group theory are assumed to be known. The text is accessible to advanced undergraduate and graduate students in mathematics.


Book
Number Theory and Symmetry
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

According to Carl Friedrich Gauss (1777–1855), mathematics is the queen of the sciences—and number theory is the queen of mathematics. Numbers (integers, algebraic integers, transcendental numbers, p-adic numbers) and symmetries are investigated in the nine refereed papers of this MDPI issue. This book shows how symmetry pervades number theory. In particular, it highlights connections between symmetry and number theory, quantum computing and elementary particles (thanks to 3-manifolds), and other branches of mathematics (such as probability spaces) and revisits standard subjects (such as the Sieve procedure, primality tests, and Pascal’s triangle). The book should be of interest to all mathematicians, and physicists.


Book
Number Theory and Symmetry
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

According to Carl Friedrich Gauss (1777–1855), mathematics is the queen of the sciences—and number theory is the queen of mathematics. Numbers (integers, algebraic integers, transcendental numbers, p-adic numbers) and symmetries are investigated in the nine refereed papers of this MDPI issue. This book shows how symmetry pervades number theory. In particular, it highlights connections between symmetry and number theory, quantum computing and elementary particles (thanks to 3-manifolds), and other branches of mathematics (such as probability spaces) and revisits standard subjects (such as the Sieve procedure, primality tests, and Pascal’s triangle). The book should be of interest to all mathematicians, and physicists.


Book
Number Theory and Symmetry
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

According to Carl Friedrich Gauss (1777–1855), mathematics is the queen of the sciences—and number theory is the queen of mathematics. Numbers (integers, algebraic integers, transcendental numbers, p-adic numbers) and symmetries are investigated in the nine refereed papers of this MDPI issue. This book shows how symmetry pervades number theory. In particular, it highlights connections between symmetry and number theory, quantum computing and elementary particles (thanks to 3-manifolds), and other branches of mathematics (such as probability spaces) and revisits standard subjects (such as the Sieve procedure, primality tests, and Pascal’s triangle). The book should be of interest to all mathematicians, and physicists.

Listing 1 - 4 of 4
Sort by