Narrow your search

Library

FARO (9)

KU Leuven (9)

LUCA School of Arts (9)

Odisee (9)

Thomas More Kempen (9)

Thomas More Mechelen (9)

UCLL (9)

ULB (9)

ULiège (9)

VIVES (9)

More...

Resource type

book (21)


Language

English (21)


Year
From To Submit

2022 (9)

2021 (6)

2020 (3)

2019 (3)

Listing 1 - 10 of 21 << page
of 3
>>
Sort by

Book
Heat and Mass Transfer in Building Energy Performance Assessment
Authors: --- ---
ISBN: 3039219278 303921926X Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The building industry is influenced by many factors and trends reflecting the current situation and developments in social, economic, technical, and scientific fields. One of the most important trends seeks to minimize the energy demand. This can be achieved by promoting the construction of buildings with better thermal insulating capabilities of their envelopes and better efficiency in heating, ventilation, and air conditioning systems. Any credible assessment of building energy performance includes the identification and simulation of heat and mass transfer phenomena in both the building envelope and the interior of the building. As the interaction between design elements, climate change, user behavior, heating effectiveness, ventilation, air conditioning systems, and lighting is not straightforward, the assessment procedure can present a complex and challenging task. The simulations should then involve all factors affecting the energy performance of the building in questions. However, the appropriate choice of physical model of heat and mass transfer for different building elements is not the only factor affecting the output of building energy simulations. The accuracy of the material parameters applied in the models as input data is another potential source of uncertainty. For instance, neglecting the dependence of hygric and thermal parameters on moisture content may affect the energy assessment in a significant way. Boundary conditions in the form of weather data sets represent yet another crucial factor determining the uncertainty of the outputs. In light of recent trends in climate change, this topic is vitally important. This Special Issue aims at providing recent developments in laboratory analyses, computational modeling, and in situ measurements related to the assessment of building energy performance based on the proper identification of heat and mass transfer processes in building structures.


Book
Application of Photoactive Nanomaterials in Degradation of Pollutants
Author:
ISBN: 3039213822 3039213814 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Photoactive nanomaterials have been receiving increasing attention due to their potential application in the light-driven degradation of water and gas-phase pollutants. However, to exploit the great potential of photoactive materials and access their properties requires fine-tuning of their size/shape-dependent chemical–physical properties, and on the ability to integrate them in photoreactors or to deposit them onto large surfaces. Therefore, the synthetic approach as well as post-synthesis manipulation could strongly affect the final photocatalytic properties of the nanomaterial. The aim of the present Special Issue is to report on the most recent progress towards the application of photoactive nanomaterials and nanomaterial-based coatings in pollutant degradation, paying particular attention to cases close to real application: scalable synthetic approaches to nanocatalysts, preparation of nanocatalyst-based coatings, degradation of real pollutants and bacterial inactivation, and application in building materials.


Book
Heterogeneous Catalysis and Advanced Oxidation Processes (AOP) for Environmental Protection (VOCs Oxidation, Air and Water Purification)
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The recent developments in the environmental applications of heterogenous catalysis and photocatalysis are described in this book, focusing on air and water purification using innovative and performing catalysts and applying new green and sustainable processes.


Book
Heterogeneous Catalysis and Advanced Oxidation Processes (AOP) for Environmental Protection (VOCs Oxidation, Air and Water Purification)
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The recent developments in the environmental applications of heterogenous catalysis and photocatalysis are described in this book, focusing on air and water purification using innovative and performing catalysts and applying new green and sustainable processes.


Book
Heterogeneous Catalysis and Advanced Oxidation Processes (AOP) for Environmental Protection (VOCs Oxidation, Air and Water Purification)
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The recent developments in the environmental applications of heterogenous catalysis and photocatalysis are described in this book, focusing on air and water purification using innovative and performing catalysts and applying new green and sustainable processes.

Keywords

Technology: general issues --- Chemical engineering --- ceria --- pesticide --- photocatalysis --- photo-Fenton --- AOPs --- thin films --- ZnO --- doping --- heterogeneous photocatalysis --- VOCs --- bimetallic catalysts --- air purification --- catalytic combustion --- China --- elimination technology --- pharmaceutical industry --- advanced oxidation processes --- ozone --- ultraviolet --- bleaching --- fabrics --- industrial wastewater --- zero valent iron --- magnetite --- hematite --- alkali-activated material --- geopolymer --- blast furnace slag --- catalytic wet peroxide oxidation --- Fe-catalyst --- bisphenol A --- Mn-Zr solid solution --- toluene --- active oxygen --- combustion --- VOC --- photothermo catalysis --- ethanol --- manganese oxide --- zirconium oxide --- hydrothermal preparation --- co-precipitation --- CuFeS2 --- Fenton-like reaction --- degradation --- environmental water samples --- ciprofloxacin --- levofloxacin --- gC3N4 --- rGO --- Au nanoparticles --- ceria --- pesticide --- photocatalysis --- photo-Fenton --- AOPs --- thin films --- ZnO --- doping --- heterogeneous photocatalysis --- VOCs --- bimetallic catalysts --- air purification --- catalytic combustion --- China --- elimination technology --- pharmaceutical industry --- advanced oxidation processes --- ozone --- ultraviolet --- bleaching --- fabrics --- industrial wastewater --- zero valent iron --- magnetite --- hematite --- alkali-activated material --- geopolymer --- blast furnace slag --- catalytic wet peroxide oxidation --- Fe-catalyst --- bisphenol A --- Mn-Zr solid solution --- toluene --- active oxygen --- combustion --- VOC --- photothermo catalysis --- ethanol --- manganese oxide --- zirconium oxide --- hydrothermal preparation --- co-precipitation --- CuFeS2 --- Fenton-like reaction --- degradation --- environmental water samples --- ciprofloxacin --- levofloxacin --- gC3N4 --- rGO --- Au nanoparticles


Book
Sustainable Structural Design for High-Performance Buildings and Infrastructures
Authors: --- --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Exceptional design loads on buildings and structures may have different causes, including high-strain natural hazards, man-made attacks and accidents, and extreme operational conditions. All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive. Dedicated and refined methods are thus required for design, analysis, and maintenance under structures’ expected lifetimes. Major challenges are related to the structural typology and material properties. Further issues are related to the need for the mitigation or retrofitting of existing structures, or from the optimal and safe design of innovative materials/systems. Finally, in some cases, no design recommendations are available, and thus experimental investigations can have a key role in the overall process. For this SI, we have invited scientists to focus on the recent advancements and trends in the sustainable design of high-performance buildings and structures. Special attention has been given to materials and systems, but also to buildings and infrastructures that can be subjected to extreme design loads. This can be the case of exceptional natural events or unfavorable ambient conditions. The assessment of hazard and risk associated with structures and civil infrastructure systems is important for the preservation and protection of built environments. New procedures, methods, and more precise rules for safety design and the protection of sustainable structures are, however, needed.

Keywords

Technology: general issues --- History of engineering & technology --- Materials science --- analytical model --- ductile walls --- shear strength --- capacity reduction --- Eurocode 8 --- concrete --- stainless steel --- reinforcement --- temperature --- thermal expansion --- waste management --- construction demolition waste --- thermochromic --- green building material --- recycled waste material --- corrosion --- deterioration --- stirrup --- beams --- cement-based composites (CBCs) --- compressive strength --- fire exposure --- thermal boundaries --- finite element (FE) numerical modelling --- empirical formulations --- fly ash --- granulated blast-furnace slag --- palm oil fly ash --- ordinary Portland cement --- recycled ceramics --- green mortar --- alkali-activated mix design --- embodied energy --- CO2 emission --- assessment --- earthquake --- Zagreb --- case study --- cultural heritage --- seismic design --- structural glass --- q-factor --- engineering demand parameters (EDPs) --- finite element (FE) numerical models --- non-linear incremental dynamic analyses (IDA) --- cloud analysis --- linear regression --- composites --- timber --- CLT --- load-bearing glass --- friction --- FEM analysis --- beam–column joints --- shear capacity --- cyclic loading --- joint’s numerical modeling --- interior joint --- corner joint --- modified reinforcement technique (MRT) --- beam-column joint --- ferrocement --- crack --- ductility --- displacement --- reinforced concrete --- deep beam --- support vector regression --- metaheuristic optimization


Book
Advances in Pyrometallurgy
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

There are several major megatrends having an impact on pyrometallurgical metal processing. The steadily growing demand for all metals is strengthened by the emergence of electrical vehicles (EV), which brings a high need for battery metals, but additionally, a significant increase in copper consumption. Even if only moderate forecasts for the number of the EVs become true, production of the base metals must increase by tens of percentages, or even more than double. At the same time, pyrometallurgical processes have to produce fewer side products, such as slag, and maintain the quality level of the primary product, although raw material mixtures are increasingly complex and new elements are entering the processes in secondary raw materials. Therefore, it is imperative to continue the development of pyrometallurgical processes more efficiently and productively, while still improving their selectivity regarding slagging the unwanted material and recovering the desired elements. This Special Issue is for current advances in the pyrometallurgical processing of metals, including all aspects, namely, the basic unit processes and operations in a smelter, metallurgical engineering, furnace integrity, cooling systems, modelling, slag and offgas handling, to name a few. A collection of 13 papers deal with ferrous and ferroalloy development, and the processing of different raw materials for metal production.

Keywords

Technology: general issues --- blast furnace slag --- TiO2 --- titanium carbonitride --- viscosity --- limonite --- magnetization reduction roasting --- rotary kiln --- deposit --- fayalite --- FeO --- liquid phase --- medium manganese steel --- spinel inclusions --- Ce treatment --- modification mechanism --- copper concentrate --- pyrometallurgy --- flash smelting --- combustion --- classification --- spectroscopy --- PCA --- SIMCA --- PLS-DA --- k-NN --- support vector machines --- scandium --- master alloys --- aluminum alloys --- metallothermy --- vacuum induction melting --- factsage --- nickel laterite --- non-melting reducing --- sodium chloride --- magnetic separation --- garnierite --- vacuum carbothermal reduction --- mechanism --- CaF2 --- recovery --- devolatilization --- torrefied biomass --- bio-coal --- volatile matter --- reduction --- blast furnace --- multistage and deep reduction --- low-oxygen high titanium ferroalloy --- inclusions --- melt separation --- slag-metal separation --- hearth drainage --- iron and slag flow --- interface phenomena --- CaO-SiO2-FetO-P2O5 slag system --- distribution ratio of phosphorus --- dephosphorization --- n·2CaO·SiO2-3CaO·P2O5 solid solution --- B2O3 --- vanadium–titanium sintering --- metallurgical properties --- microstructures --- Søderberg electrodes --- submerged arc furnace (SAF) --- ferro-alloy production --- ferrochrome --- electrical resistivity --- degree of graphitisation --- bulk density --- porosity --- compressive breaking strength


Book
Advances in Pyrometallurgy
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

There are several major megatrends having an impact on pyrometallurgical metal processing. The steadily growing demand for all metals is strengthened by the emergence of electrical vehicles (EV), which brings a high need for battery metals, but additionally, a significant increase in copper consumption. Even if only moderate forecasts for the number of the EVs become true, production of the base metals must increase by tens of percentages, or even more than double. At the same time, pyrometallurgical processes have to produce fewer side products, such as slag, and maintain the quality level of the primary product, although raw material mixtures are increasingly complex and new elements are entering the processes in secondary raw materials. Therefore, it is imperative to continue the development of pyrometallurgical processes more efficiently and productively, while still improving their selectivity regarding slagging the unwanted material and recovering the desired elements. This Special Issue is for current advances in the pyrometallurgical processing of metals, including all aspects, namely, the basic unit processes and operations in a smelter, metallurgical engineering, furnace integrity, cooling systems, modelling, slag and offgas handling, to name a few. A collection of 13 papers deal with ferrous and ferroalloy development, and the processing of different raw materials for metal production.

Keywords

blast furnace slag --- TiO2 --- titanium carbonitride --- viscosity --- limonite --- magnetization reduction roasting --- rotary kiln --- deposit --- fayalite --- FeO --- liquid phase --- medium manganese steel --- spinel inclusions --- Ce treatment --- modification mechanism --- copper concentrate --- pyrometallurgy --- flash smelting --- combustion --- classification --- spectroscopy --- PCA --- SIMCA --- PLS-DA --- k-NN --- support vector machines --- scandium --- master alloys --- aluminum alloys --- metallothermy --- vacuum induction melting --- factsage --- nickel laterite --- non-melting reducing --- sodium chloride --- magnetic separation --- garnierite --- vacuum carbothermal reduction --- mechanism --- CaF2 --- recovery --- devolatilization --- torrefied biomass --- bio-coal --- volatile matter --- reduction --- blast furnace --- multistage and deep reduction --- low-oxygen high titanium ferroalloy --- inclusions --- melt separation --- slag-metal separation --- hearth drainage --- iron and slag flow --- interface phenomena --- CaO-SiO2-FetO-P2O5 slag system --- distribution ratio of phosphorus --- dephosphorization --- n·2CaO·SiO2-3CaO·P2O5 solid solution --- B2O3 --- vanadium–titanium sintering --- metallurgical properties --- microstructures --- Søderberg electrodes --- submerged arc furnace (SAF) --- ferro-alloy production --- ferrochrome --- electrical resistivity --- degree of graphitisation --- bulk density --- porosity --- compressive breaking strength


Book
Sustainable Structural Design for High-Performance Buildings and Infrastructures
Authors: --- --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Exceptional design loads on buildings and structures may have different causes, including high-strain natural hazards, man-made attacks and accidents, and extreme operational conditions. All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive. Dedicated and refined methods are thus required for design, analysis, and maintenance under structures’ expected lifetimes. Major challenges are related to the structural typology and material properties. Further issues are related to the need for the mitigation or retrofitting of existing structures, or from the optimal and safe design of innovative materials/systems. Finally, in some cases, no design recommendations are available, and thus experimental investigations can have a key role in the overall process. For this SI, we have invited scientists to focus on the recent advancements and trends in the sustainable design of high-performance buildings and structures. Special attention has been given to materials and systems, but also to buildings and infrastructures that can be subjected to extreme design loads. This can be the case of exceptional natural events or unfavorable ambient conditions. The assessment of hazard and risk associated with structures and civil infrastructure systems is important for the preservation and protection of built environments. New procedures, methods, and more precise rules for safety design and the protection of sustainable structures are, however, needed.


Book
Sustainable Structural Design for High-Performance Buildings and Infrastructures
Authors: --- --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Exceptional design loads on buildings and structures may have different causes, including high-strain natural hazards, man-made attacks and accidents, and extreme operational conditions. All of these aspects can be critical for specific structural typologies and/or materials that are particularly sensitive. Dedicated and refined methods are thus required for design, analysis, and maintenance under structures’ expected lifetimes. Major challenges are related to the structural typology and material properties. Further issues are related to the need for the mitigation or retrofitting of existing structures, or from the optimal and safe design of innovative materials/systems. Finally, in some cases, no design recommendations are available, and thus experimental investigations can have a key role in the overall process. For this SI, we have invited scientists to focus on the recent advancements and trends in the sustainable design of high-performance buildings and structures. Special attention has been given to materials and systems, but also to buildings and infrastructures that can be subjected to extreme design loads. This can be the case of exceptional natural events or unfavorable ambient conditions. The assessment of hazard and risk associated with structures and civil infrastructure systems is important for the preservation and protection of built environments. New procedures, methods, and more precise rules for safety design and the protection of sustainable structures are, however, needed.

Keywords

Technology: general issues --- History of engineering & technology --- Materials science --- analytical model --- ductile walls --- shear strength --- capacity reduction --- Eurocode 8 --- concrete --- stainless steel --- reinforcement --- temperature --- thermal expansion --- waste management --- construction demolition waste --- thermochromic --- green building material --- recycled waste material --- corrosion --- deterioration --- stirrup --- beams --- cement-based composites (CBCs) --- compressive strength --- fire exposure --- thermal boundaries --- finite element (FE) numerical modelling --- empirical formulations --- fly ash --- granulated blast-furnace slag --- palm oil fly ash --- ordinary Portland cement --- recycled ceramics --- green mortar --- alkali-activated mix design --- embodied energy --- CO2 emission --- assessment --- earthquake --- Zagreb --- case study --- cultural heritage --- seismic design --- structural glass --- q-factor --- engineering demand parameters (EDPs) --- finite element (FE) numerical models --- non-linear incremental dynamic analyses (IDA) --- cloud analysis --- linear regression --- composites --- timber --- CLT --- load-bearing glass --- friction --- FEM analysis --- beam–column joints --- shear capacity --- cyclic loading --- joint’s numerical modeling --- interior joint --- corner joint --- modified reinforcement technique (MRT) --- beam-column joint --- ferrocement --- crack --- ductility --- displacement --- reinforced concrete --- deep beam --- support vector regression --- metaheuristic optimization --- analytical model --- ductile walls --- shear strength --- capacity reduction --- Eurocode 8 --- concrete --- stainless steel --- reinforcement --- temperature --- thermal expansion --- waste management --- construction demolition waste --- thermochromic --- green building material --- recycled waste material --- corrosion --- deterioration --- stirrup --- beams --- cement-based composites (CBCs) --- compressive strength --- fire exposure --- thermal boundaries --- finite element (FE) numerical modelling --- empirical formulations --- fly ash --- granulated blast-furnace slag --- palm oil fly ash --- ordinary Portland cement --- recycled ceramics --- green mortar --- alkali-activated mix design --- embodied energy --- CO2 emission --- assessment --- earthquake --- Zagreb --- case study --- cultural heritage --- seismic design --- structural glass --- q-factor --- engineering demand parameters (EDPs) --- finite element (FE) numerical models --- non-linear incremental dynamic analyses (IDA) --- cloud analysis --- linear regression --- composites --- timber --- CLT --- load-bearing glass --- friction --- FEM analysis --- beam–column joints --- shear capacity --- cyclic loading --- joint’s numerical modeling --- interior joint --- corner joint --- modified reinforcement technique (MRT) --- beam-column joint --- ferrocement --- crack --- ductility --- displacement --- reinforced concrete --- deep beam --- support vector regression --- metaheuristic optimization

Listing 1 - 10 of 21 << page
of 3
>>
Sort by