Narrow your search

Library

KU Leuven (3)

UGent (3)

ULB (3)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (8)


Language

English (7)

German (1)


Year
From To Submit

2020 (3)

2009 (1)

2004 (1)

2000 (1)

1994 (1)

More...
Listing 1 - 8 of 8
Sort by
Advances in rice blast research
Author:
ISBN: 0792362578 Year: 2000 Publisher: Dordrecht : Kluwer academic,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Rice blast disease
Authors: --- ---
ISBN: 0851989357 Year: 1994 Publisher: Wallingford CAB international


Book
Der Reisbrenner in Südkorea : Eine geographische Untersuchung zur Bedeutung biotischer Begrenzungsfaktoren im Reisanbau
Authors: ---
ISBN: 3924829209 Year: 1989 Volume: 7

Loading...
Export citation

Choose an application

Bookmark

Abstract

Rice blast : interaction with rice and control
Author:
ISBN: 1402012284 Year: 2004 Publisher: Dordrecht : Kluwer academic,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Advances in genetics, genomics and control of rice blast disease
Authors: ---
ISBN: 9048181437 140209499X 9786612036255 1282036254 1402095007 Year: 2009 Publisher: Dordrecht ; London : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Rice blast, caused by the fungal pathogen Magnaporthe grisea, is one of the most destructive rice diseases worldwide and destroys enough rice to feed more than 60 million people annually. Due to high variability of the fungal population in the field, frequent loss of resistance of newly-released rice cultivars is a major restraint in sustainable rice production. In the last few years, significant progress has been made in understanding the defense mechanism of rice and pathogenicity of the fungus. The rice blast system has become a model pathosystem for understanding the molecular basis of plant-fungal interactions due to the availability of both genomes of rice and M. grisea and a large collection of genetic resources. This book provides a complete review of the recent progress and achievements on genetic, genomic and disease control of the disease. Most of the chapters were presented at the 4th International Rice Blast Conference held on October 9-14, 2007 in Changsha, China. This book is a valuable reference not only for plant pathologists and breeders working on rice blast but also for those working on other pathysystems in crop plants.


Book
Molecular Research in Rice : Agronomically Important Traits
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This volume presents recent research achievements concerning the molecular genetic basis of agronomic traits in rice. Rice (Oryza sativa L.) is the most important food crop in the world, being a staple food for more than half of the world’s population. Recent improvements in living standards have increased the worldwide demand for high-yielding and high-quality rice cultivars. To achieve improved agricultural performance in rice, while overcoming the challenges presented by climate change, it is essential to understand the molecular basis of agronomically important traits. Recently developed techniques in molecular biology, especially in genomics and other related omics fields, can reveal the complex molecular mechanisms involved in the control of agronomic traits. As rice was the first crop genome to be sequenced, in 2004, molecular research tools for rice are well-established, and further molecular studies will enable the development of novel rice cultivars with superior agronomic performance.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- chloroplast RNA splicing and ribosome maturation (CRM) domain --- intron splicing --- chloroplast development --- rice --- rice (Oryza sativa L.), grain size and weight --- Insertion/Deletion (InDel) markers --- multi-gene allele contributions --- genetic variation --- rice germplasm --- disease resistance --- microbe-associated molecular pattern (MAMP) --- Pyricularia oryzae (formerly Magnaporthe oryzae) --- Oryza sativa (rice) --- receptor-like cytoplasmic kinase (RLCK) --- reactive oxygen species (ROS) --- salinity --- osmotic stress --- combined stress --- GABA --- phenolic metabolism --- CIPKs genes --- shoot apical meristem --- transcriptomic analysis --- co-expression network --- tiller --- nitrogen rate --- rice (Oryza sativa L.) --- quantitative trait locus --- grain protein content --- single nucleotide polymorphism --- residual heterozygote --- rice (Oryza sativa) --- specific length amplified fragment sequencing --- Kjeldahl nitrogen determination --- near infrared reflectance spectroscopy --- heterosis --- yield components --- high-throughput sequence --- FW2.2-like gene --- tiller number --- grain yield --- CRISPR/Cas9 --- genome editing --- off-target effect --- heat stress --- transcriptome --- anther --- anthesis --- pyramiding --- bacterial blight --- marker-assisted selection --- foreground selection --- background selection --- japonica rice --- cold stress --- germinability --- high-density linkage map --- QTLs --- seed dormancy --- ABA --- seed germination --- chromosome segment substitution lines --- linkage mapping --- Oryza sativa L. --- chilling stress --- chlorophyll biosynthesis --- chloroplast biogenesis --- epidermal characteristics --- AAA-ATPase --- salicylic acid --- fatty acid --- Magnaporthe oryzae --- leaf senescence --- quantitative trait loci --- transcriptome analysis --- genetic --- epigenetic --- global methylation --- transgenic --- phenotype --- OsNAR2.1 --- dwarfism --- OsCYP96B4 --- metabolomics --- NMR --- qRT-PCR --- bHLH transcription factor --- lamina joint --- leaf angle --- long grain --- brassinosteroid signaling --- blast disease --- partial resistance --- pi21 --- haplotype --- high night temperature --- wet season --- dry season --- n/a


Book
Molecular Research in Rice : Agronomically Important Traits
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This volume presents recent research achievements concerning the molecular genetic basis of agronomic traits in rice. Rice (Oryza sativa L.) is the most important food crop in the world, being a staple food for more than half of the world’s population. Recent improvements in living standards have increased the worldwide demand for high-yielding and high-quality rice cultivars. To achieve improved agricultural performance in rice, while overcoming the challenges presented by climate change, it is essential to understand the molecular basis of agronomically important traits. Recently developed techniques in molecular biology, especially in genomics and other related omics fields, can reveal the complex molecular mechanisms involved in the control of agronomic traits. As rice was the first crop genome to be sequenced, in 2004, molecular research tools for rice are well-established, and further molecular studies will enable the development of novel rice cultivars with superior agronomic performance.

Keywords

chloroplast RNA splicing and ribosome maturation (CRM) domain --- intron splicing --- chloroplast development --- rice --- rice (Oryza sativa L.), grain size and weight --- Insertion/Deletion (InDel) markers --- multi-gene allele contributions --- genetic variation --- rice germplasm --- disease resistance --- microbe-associated molecular pattern (MAMP) --- Pyricularia oryzae (formerly Magnaporthe oryzae) --- Oryza sativa (rice) --- receptor-like cytoplasmic kinase (RLCK) --- reactive oxygen species (ROS) --- salinity --- osmotic stress --- combined stress --- GABA --- phenolic metabolism --- CIPKs genes --- shoot apical meristem --- transcriptomic analysis --- co-expression network --- tiller --- nitrogen rate --- rice (Oryza sativa L.) --- quantitative trait locus --- grain protein content --- single nucleotide polymorphism --- residual heterozygote --- rice (Oryza sativa) --- specific length amplified fragment sequencing --- Kjeldahl nitrogen determination --- near infrared reflectance spectroscopy --- heterosis --- yield components --- high-throughput sequence --- FW2.2-like gene --- tiller number --- grain yield --- CRISPR/Cas9 --- genome editing --- off-target effect --- heat stress --- transcriptome --- anther --- anthesis --- pyramiding --- bacterial blight --- marker-assisted selection --- foreground selection --- background selection --- japonica rice --- cold stress --- germinability --- high-density linkage map --- QTLs --- seed dormancy --- ABA --- seed germination --- chromosome segment substitution lines --- linkage mapping --- Oryza sativa L. --- chilling stress --- chlorophyll biosynthesis --- chloroplast biogenesis --- epidermal characteristics --- AAA-ATPase --- salicylic acid --- fatty acid --- Magnaporthe oryzae --- leaf senescence --- quantitative trait loci --- transcriptome analysis --- genetic --- epigenetic --- global methylation --- transgenic --- phenotype --- OsNAR2.1 --- dwarfism --- OsCYP96B4 --- metabolomics --- NMR --- qRT-PCR --- bHLH transcription factor --- lamina joint --- leaf angle --- long grain --- brassinosteroid signaling --- blast disease --- partial resistance --- pi21 --- haplotype --- high night temperature --- wet season --- dry season --- n/a


Book
Molecular Research in Rice : Agronomically Important Traits
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This volume presents recent research achievements concerning the molecular genetic basis of agronomic traits in rice. Rice (Oryza sativa L.) is the most important food crop in the world, being a staple food for more than half of the world’s population. Recent improvements in living standards have increased the worldwide demand for high-yielding and high-quality rice cultivars. To achieve improved agricultural performance in rice, while overcoming the challenges presented by climate change, it is essential to understand the molecular basis of agronomically important traits. Recently developed techniques in molecular biology, especially in genomics and other related omics fields, can reveal the complex molecular mechanisms involved in the control of agronomic traits. As rice was the first crop genome to be sequenced, in 2004, molecular research tools for rice are well-established, and further molecular studies will enable the development of novel rice cultivars with superior agronomic performance.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- chloroplast RNA splicing and ribosome maturation (CRM) domain --- intron splicing --- chloroplast development --- rice --- rice (Oryza sativa L.), grain size and weight --- Insertion/Deletion (InDel) markers --- multi-gene allele contributions --- genetic variation --- rice germplasm --- disease resistance --- microbe-associated molecular pattern (MAMP) --- Pyricularia oryzae (formerly Magnaporthe oryzae) --- Oryza sativa (rice) --- receptor-like cytoplasmic kinase (RLCK) --- reactive oxygen species (ROS) --- salinity --- osmotic stress --- combined stress --- GABA --- phenolic metabolism --- CIPKs genes --- shoot apical meristem --- transcriptomic analysis --- co-expression network --- tiller --- nitrogen rate --- rice (Oryza sativa L.) --- quantitative trait locus --- grain protein content --- single nucleotide polymorphism --- residual heterozygote --- rice (Oryza sativa) --- specific length amplified fragment sequencing --- Kjeldahl nitrogen determination --- near infrared reflectance spectroscopy --- heterosis --- yield components --- high-throughput sequence --- FW2.2-like gene --- tiller number --- grain yield --- CRISPR/Cas9 --- genome editing --- off-target effect --- heat stress --- transcriptome --- anther --- anthesis --- pyramiding --- bacterial blight --- marker-assisted selection --- foreground selection --- background selection --- japonica rice --- cold stress --- germinability --- high-density linkage map --- QTLs --- seed dormancy --- ABA --- seed germination --- chromosome segment substitution lines --- linkage mapping --- Oryza sativa L. --- chilling stress --- chlorophyll biosynthesis --- chloroplast biogenesis --- epidermal characteristics --- AAA-ATPase --- salicylic acid --- fatty acid --- Magnaporthe oryzae --- leaf senescence --- quantitative trait loci --- transcriptome analysis --- genetic --- epigenetic --- global methylation --- transgenic --- phenotype --- OsNAR2.1 --- dwarfism --- OsCYP96B4 --- metabolomics --- NMR --- qRT-PCR --- bHLH transcription factor --- lamina joint --- leaf angle --- long grain --- brassinosteroid signaling --- blast disease --- partial resistance --- pi21 --- haplotype --- high night temperature --- wet season --- dry season

Listing 1 - 8 of 8
Sort by