Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2022 (1)

2021 (3)

2020 (3)

Listing 1 - 7 of 7
Sort by

Book
Feature Papers in Compounds
Author:
ISBN: 3036559884 3036559876 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book represents a collection of contributions in the field of the synthesis and characterization of chemical compounds, natural products, chemical reactivity, and computational chemistry. Among its contents, the reader will find high-quality, peer-reviewed research and review articles that were published in the open access journal Compounds by members of the Editorial Board and the authors invited by the Editorial Office and Editor-in-Chief.

Keywords

Technology: general issues --- Chemical engineering --- atropisomerism --- 4,4′-bipyridine --- pyridine N-oxidation --- halogenation --- halogen bond --- cyanation --- Finkelstein reaction --- Suzuki coupling --- Orchis --- scent --- gas chromatography --- mass spectrometry --- solid-phase microextraction --- quantum chemistry --- computational chemistry --- molecular dynamics --- modeling --- open-source software --- proprietary software --- Himantoglossum --- solid phase microextraction --- iodination --- alkanes --- alkenes --- alkynes --- alkyl carbonyls --- elemental iodine --- iodides --- Zutano variety --- avocado oil --- Soxhlet extraction --- ultrasound-assisted extraction --- volatiles --- ripening --- over-ripe --- HS-SPME–GC–MS --- Basilicata --- Barlia robertiana --- Himantoglossum robertianum --- mantel test --- Orchidaceae --- pollination syndrome --- Italy --- volatile compounds --- solvolysis --- aryldiazonium ions --- perchlorate anions --- silicon carbide (SiC) --- 3C-SiC powder --- 4H-SiC crystal --- impurities --- photoluminescence --- pnictogen bonding --- nitrogen as pnictogen bond donor --- geometries --- crystal structure analysis --- ICSD and CSD database analyses --- MESP characterizations --- sum of the van der Waals radii concept --- Dactylorhiza --- volatile organic compounds --- thiosemicarbazone --- metal complexes --- DNA interactions --- biological activity --- thiazolidinedione --- microwave synthesis --- compound library --- rosiglitazone --- Knoevangel condensation --- biodiesel production --- crude glycerin --- carbon materials --- n/a --- 4,4'-bipyridine --- HS-SPME-GC-MS


Book
Functional Coordination Polymers and Metal-Organic Frameworks
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a collection of contributions on the synthesis, characterization, and applications of Metal-Organic Frameworks (MOF) and Coordination Polymers (CP). Coordination Polymers (CP) and Metal–Organic Frameworks (MOF) are at the core of contemporary research on inorganic materials. The virtually infinite combination of their building blocks—inorganic metallic nodes (single ions or clusters) and organic polytopic linkers (polycarboxylates, bridging N-/S-/O-containing heterocycles)—generates solid air- and water-stable compounds. Interesting features from an applicative point of view are porosity, large surface area, and lattice flexibility (the “breathing” effect). These properties make them ubiquitous in several fields of materials science: gas storage and separation, luminescent sensing, heterogeneous catalysis, and magnetism.


Book
Functional Coordination Polymers and Metal-Organic Frameworks
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a collection of contributions on the synthesis, characterization, and applications of Metal-Organic Frameworks (MOF) and Coordination Polymers (CP). Coordination Polymers (CP) and Metal–Organic Frameworks (MOF) are at the core of contemporary research on inorganic materials. The virtually infinite combination of their building blocks—inorganic metallic nodes (single ions or clusters) and organic polytopic linkers (polycarboxylates, bridging N-/S-/O-containing heterocycles)—generates solid air- and water-stable compounds. Interesting features from an applicative point of view are porosity, large surface area, and lattice flexibility (the “breathing” effect). These properties make them ubiquitous in several fields of materials science: gas storage and separation, luminescent sensing, heterogeneous catalysis, and magnetism.


Book
Advanced Catalysis in Hydrogen Production from Formic Acid and Methanol
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue is related to studies of the hydrogen production from formic acid decomposition. It is based on five research papers and two reviews. The reviews discuss the liquid phase formic acid decomposition over bimetallic (PdAg), molecular (Ru, Ir, Fe, Co), and heterogenized molecular catalysts. The gas-phase reaction is studied over highly dispersed Pd, Pt, Au, Cu, and Ni supported catalysts. It is shown that the nature of the catalyst’s support plays an important role for the reaction. Thus, N-doping of the carbon support provides a significant promotional effect. One of the reasons for the high activity of the N-doped catalysts is the formation of single-atom active sites stabilized by pyridinic N species present in the support. It is demonstrated that carbon materials can be N-doped in different ways. It can be performed either directly from N-containing compounds during the carbon synthesis or by a post-synthetic deposition of N-containing compounds on the carbon support with known properties. The Issue could be useful for specialists in catalysis and nanomaterials as well as for graduate students studying chemistry and chemical engineering. The reported results can be applied for development of catalysts for the hydrogen production from different liquid organic hydrogen carriers.

Keywords

Technology: general issues --- formic acid decomposition --- hydrogen production --- CuO-CeO2/γ-Al2O3 --- multifuel processor --- copper catalyst --- oxygenates --- fuel cell --- Pd/C --- melamine --- g-C3N4 --- bipyridine --- phenanthroline --- N-doped carbon --- hydrogen --- formic acid --- platinum --- nitrogen doped --- carbon nanotubes --- carbon nanofibers --- heterogeneous catalysts --- bimetallic nanoparticles --- PdAg --- AgPd --- alloy --- nickel catalyst --- porous carbon support --- nitrogen doping --- hydrogen energetics --- hydrogen carrier --- formic acid dehydrogenation --- supported gold catalysts --- formic --- formate --- hybrid --- functionalization --- co-catalyst --- additive --- amine --- molecular catalyst --- nanocatalyst --- nano co-catalyst --- formic acid decomposition --- hydrogen production --- CuO-CeO2/γ-Al2O3 --- multifuel processor --- copper catalyst --- oxygenates --- fuel cell --- Pd/C --- melamine --- g-C3N4 --- bipyridine --- phenanthroline --- N-doped carbon --- hydrogen --- formic acid --- platinum --- nitrogen doped --- carbon nanotubes --- carbon nanofibers --- heterogeneous catalysts --- bimetallic nanoparticles --- PdAg --- AgPd --- alloy --- nickel catalyst --- porous carbon support --- nitrogen doping --- hydrogen energetics --- hydrogen carrier --- formic acid dehydrogenation --- supported gold catalysts --- formic --- formate --- hybrid --- functionalization --- co-catalyst --- additive --- amine --- molecular catalyst --- nanocatalyst --- nano co-catalyst


Book
Advanced Catalysis in Hydrogen Production from Formic Acid and Methanol
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue is related to studies of the hydrogen production from formic acid decomposition. It is based on five research papers and two reviews. The reviews discuss the liquid phase formic acid decomposition over bimetallic (PdAg), molecular (Ru, Ir, Fe, Co), and heterogenized molecular catalysts. The gas-phase reaction is studied over highly dispersed Pd, Pt, Au, Cu, and Ni supported catalysts. It is shown that the nature of the catalyst’s support plays an important role for the reaction. Thus, N-doping of the carbon support provides a significant promotional effect. One of the reasons for the high activity of the N-doped catalysts is the formation of single-atom active sites stabilized by pyridinic N species present in the support. It is demonstrated that carbon materials can be N-doped in different ways. It can be performed either directly from N-containing compounds during the carbon synthesis or by a post-synthetic deposition of N-containing compounds on the carbon support with known properties. The Issue could be useful for specialists in catalysis and nanomaterials as well as for graduate students studying chemistry and chemical engineering. The reported results can be applied for development of catalysts for the hydrogen production from different liquid organic hydrogen carriers.


Book
Advanced Catalysis in Hydrogen Production from Formic Acid and Methanol
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue is related to studies of the hydrogen production from formic acid decomposition. It is based on five research papers and two reviews. The reviews discuss the liquid phase formic acid decomposition over bimetallic (PdAg), molecular (Ru, Ir, Fe, Co), and heterogenized molecular catalysts. The gas-phase reaction is studied over highly dispersed Pd, Pt, Au, Cu, and Ni supported catalysts. It is shown that the nature of the catalyst’s support plays an important role for the reaction. Thus, N-doping of the carbon support provides a significant promotional effect. One of the reasons for the high activity of the N-doped catalysts is the formation of single-atom active sites stabilized by pyridinic N species present in the support. It is demonstrated that carbon materials can be N-doped in different ways. It can be performed either directly from N-containing compounds during the carbon synthesis or by a post-synthetic deposition of N-containing compounds on the carbon support with known properties. The Issue could be useful for specialists in catalysis and nanomaterials as well as for graduate students studying chemistry and chemical engineering. The reported results can be applied for development of catalysts for the hydrogen production from different liquid organic hydrogen carriers.


Book
Functional Coordination Polymers and Metal-Organic Frameworks
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a collection of contributions on the synthesis, characterization, and applications of Metal-Organic Frameworks (MOF) and Coordination Polymers (CP). Coordination Polymers (CP) and Metal–Organic Frameworks (MOF) are at the core of contemporary research on inorganic materials. The virtually infinite combination of their building blocks—inorganic metallic nodes (single ions or clusters) and organic polytopic linkers (polycarboxylates, bridging N-/S-/O-containing heterocycles)—generates solid air- and water-stable compounds. Interesting features from an applicative point of view are porosity, large surface area, and lattice flexibility (the “breathing” effect). These properties make them ubiquitous in several fields of materials science: gas storage and separation, luminescent sensing, heterogeneous catalysis, and magnetism.

Keywords

Research & information: general --- zirconium-based MOFs --- water adsorption --- ethanol adsorption --- porous materials --- adsorption heat pump --- coordination polymer --- MOF --- CP --- dimensionality control --- Cu(II)-4,4'-bipyridine --- dipyridil ligand --- copper --- metal-organic frameworks --- solid sorbents --- shaping --- gas separation --- gas storage --- water harvesting --- zirconium --- metal-organic framework --- post-synthetic modification --- iridium catalysis --- water oxidation --- water splitting --- thiazole --- thiadiazole --- coordination polymers --- luminescence --- cerium --- terephthalic acid --- spectroscopic characterization --- adsorption --- calorimetry --- carbon dioxide --- Ag(I) complexes --- metal-organic coordination polymers --- thermally activated delayed fluorescence --- phosphorescence --- pyrimidylphosphines --- poly(azolate) spacers --- 1,3-bis(1,2,4-triazol-4-yl)adamantane --- zinc --- cadmium --- crystal structure --- group 12 metals --- 1H-indazole-6-carboxylic acid --- photoluminescence properties --- organometallic --- coordination bonds --- supramolecular chemistry --- catalysis --- zirconium-based MOFs --- water adsorption --- ethanol adsorption --- porous materials --- adsorption heat pump --- coordination polymer --- MOF --- CP --- dimensionality control --- Cu(II)-4,4'-bipyridine --- dipyridil ligand --- copper --- metal-organic frameworks --- solid sorbents --- shaping --- gas separation --- gas storage --- water harvesting --- zirconium --- metal-organic framework --- post-synthetic modification --- iridium catalysis --- water oxidation --- water splitting --- thiazole --- thiadiazole --- coordination polymers --- luminescence --- cerium --- terephthalic acid --- spectroscopic characterization --- adsorption --- calorimetry --- carbon dioxide --- Ag(I) complexes --- metal-organic coordination polymers --- thermally activated delayed fluorescence --- phosphorescence --- pyrimidylphosphines --- poly(azolate) spacers --- 1,3-bis(1,2,4-triazol-4-yl)adamantane --- zinc --- cadmium --- crystal structure --- group 12 metals --- 1H-indazole-6-carboxylic acid --- photoluminescence properties --- organometallic --- coordination bonds --- supramolecular chemistry --- catalysis

Listing 1 - 7 of 7
Sort by