Listing 1 - 10 of 1104 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
Choose an application
Newly revised to specifically address Microsoft Excel 2019, this book is a step-by-step, exercise-driven guide for students and practitioners who need to master Excel to solve practical biological and life science problems. Excel is an effective learning tool for quantitative analyses in biological and life sciences courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. Excel 2019 for Biological and Life Sciences Statistics capitalizes on these improvements by teaching students and professionals how to apply Excel 2019 to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand biological and life science problems. Practice problems are provided at the end of each chapter with their solutions in an appendix. Separately, there is a full practice test (with answers in an appendix) that allows readers to test what they have learned. This new edition offers a wealth of new practice problems and solutions, as well as updated chapter content throughout.
Choose an application
The purpose of this book is to thoroughly prepare the reader for applied research in clustering. Cluster analysis comprises a class of statistical techniques for classifying multivariate data into groups or clusters based on their similar features. Clustering is nowadays widely used in several domains of research, such as social sciences, psychology, and marketing, highlighting its multidisciplinary nature. This book provides an accessible and comprehensive introduction to clustering and offers practical guidelines for applying clustering tools by carefully chosen real-life datasets and extensive data analyses. The procedures addressed in this book include traditional hard clustering methods and up-to-date developments in soft clustering. Attention is paid to practical examples and applications through the open source statistical software R. Commented R code and output for conducting, step by step, complete cluster analyses are available. The book is intended for researchers interested in applying clustering methods. Basic notions on theoretical issues and on R are provided so that professionals as well as novices with little or no background in the subject will benefit from the book.
Choose an application
The specialized field of scan statistics, fathered by Joseph Naus around 1999, burgeoned rapidly to prominence in the field of applied probability and statistics. In additional to challenging theoretical probelms, scan statistics has exciting applications in many areas of science and technologyu including archaelogy, astronomy, physics, bioinformatics, and food sciences, just to name a few. In many fields, decision makers give a great deal of weight to clusters of events. Public Health investigators look for common cause factors to explain clusters of, for example, cancer. Molecular biologists look for palindrome clusters in DNA for clues as to the origin of replication viruses. Telecommunication engineers design capacity to accommodate clusters of calls being dialed simultaneously to a switchboard. Quality control experts investigate clusters of defects. The probabilities of different types of clusters under various conditions are tools of the physical, natural, and social sciences. Scan statistics arise naturally in the scanning of time and space, seeking clusters of events. It is therefore no surprise that scan statistics is a major area of research in probability and statistics in the 21st century. In the last 5 years about 1600 hits appear on Google Scholar referencing the extensive activity in scan statistics and the breadth of the application. (Since 2010, about 482 hits are recorded in Google scholar.) The Handbook of Scan Statistics in two volumes is intended for researchers in probability and statistics and scientists in several areas including biology, engineering, health, medical, and social sciences. It will be of great value to graduate students in statistics and in all areas where scan statistics are used.
Choose an application
This book provides a self-contained introduction to shrinkage estimation for matrix-variate normal distribution models. More specifically, it presents recent techniques and results in estimation of mean and covariance matrices with a high-dimensional setting that implies singularity of the sample covariance matrix. Such high-dimensional models can be analyzed by using the same arguments as for low-dimensional models, thus yielding a unified approach to both high- and low-dimensional shrinkage estimations. The unified shrinkage approach not only integrates modern and classical shrinkage estimation, but is also required for further development of the field. Beginning with the notion of decision-theoretic estimation, this book explains matrix theory, group invariance, and other mathematical tools for finding better estimators. It also includes examples of shrinkage estimators for improving standard estimators, such as least squares, maximum likelihood, and minimum risk invariant estimators, and discusses the historical background and related topics in decision-theoretic estimation of parameter matrices. This book is useful for researchers and graduate students in various fields requiring data analysis skills as well as in mathematical statistics.
Choose an application
Biomathematics. Biometry. Biostatistics --- biostatistiek --- Medical statistics --- Biometry
Choose an application
Probability, Statistics and Modelling in Public Health consists of refereed contributions by expert biostatisticians that discuss various probabilistic and statistical models used in public health. Many of them are based on the work of Marvin Zelen of the Harvard School of Public Health. Topics discussed include models based on Markov and semi-Markov processes, multi-state models, models and methods in lifetime data analysis, accelerated failure models, design and analysis of clinical trials, Bayesian methods, pharmaceutical and environmental statistics, degradation models, epidemiological methods, screening programs, early detection of diseases, and measurement and analysis of quality of life. Audience This book is intended for researchers interested in statistical methodology in the biomedical field.
Biomathematics. Biometry. Biostatistics --- medische statistiek --- biostatistiek --- biometrie
Choose an application
The approach taken in this book is, to studies monitored over time, what the Central Limit Theorem is to studies with only one analysis. Just as the Central Limit Theorem shows that test statistics involving very different types of clinical trial outcomes are asymptotically normal, this book shows that the joint distribution of the test statistics at different analysis times is asymptotically multivariate normal with the correlation structure of Brownian motion (``the B-value") irrespective of the test statistic. The so-called B-value approach to monitoring allows us to use, for different types of trials, the same boundaries and the same simple formula for computing conditional power. Although Brownian motion may sound complicated, the authors make the approach easy by starting with a simple example and building on it, one piece at a time, ultimately showing that Brownian motion works for many different types of clinical trials. The book will be very valuable to statisticians involved in clinical trials. The main body of the chapters is accessible to anyone with knowledge of a standard mathematical statistics text. More mathematically advanced readers will find rigorous developments in appendices at the end of chapters. Reading the book will develop insight into not only monitoring, but power, survival analysis, safety, and other statistical issues germane to clinical trials. Michael Proschan, Gordon Lan, and Janet Wittes are elected Fellows of the American Statistical Association. All have spent formative years in the Biostatistics Research Branch of the National Heart, Lung, and Blood Institute (NHLBI/NIH). While there, they were intimately involved in the design and statistical monitoring of large-scale randomized clinical trials, developing methodology to aid in their monitoring. For example, Lan developed, with DeMets, the now widely-used spending function approach to group sequential designs, whose properties were further investigated by Proschan. The B-value approach used in the book was introduced in a very influential paper by Lan and Wittes. The statistical theory behind conditional power was developed by Lan, along with Simon and Halperin, and was the cornerstone for the conditional error approach to adaptive clinical trials introduced by Proschan and Hunsberger. All three authors have expertise in adaptive methodology for clinical trials. Michael Proschan is a Mathematical Statistician at the National Institutes of Health; Gordon Lan is Senior Director of Biometrics at Johnson & Johnson Pharmaceutical Research & Development, L.L.C.; Janet Wittes is President of Statistics Collaborative, a statistical consulting company she founded in 1990.
Biomathematics. Biometry. Biostatistics --- medische statistiek --- biostatistiek --- biometrie
Listing 1 - 10 of 1104 | << page >> |
Sort by
|