Listing 1 - 7 of 7 |
Sort by
|
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
lignocellulosic biomass --- (Bio)Catalysis --- Biofuels --- platform chemicals --- Added value
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Science: general issues --- lignocellulosic biomass --- (Bio)Catalysis --- Biofuels --- platform chemicals --- Added value --- lignocellulosic biomass --- (Bio)Catalysis --- Biofuels --- platform chemicals --- Added value
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Science: general issues --- lignocellulosic biomass --- (Bio)Catalysis --- Biofuels --- platform chemicals --- Added value
Choose an application
This reprint contains contributions focusing on recent developments in the design, synthesis, and characterization of nanocatalysts intended for applications in environmental protection and low carbon footprint power generation processes thanks to the overall effort of scientists and researchers for a cleaner and more sustainable future. New synthetic approaches to the production and in-depth characterization of innovative nanostructured composites and hybrid materials with well-controlled textural and surface chemistry properties that give performance advantages in a variety of important environmental and energy applications such as CO2 utilization/recycling, hydrogen and syngas production, biosensing, and biocatalysis as well as in ways to obtain useful materials from waste are included, among others. This reprint is the result of one of the cutting-edge Special Issues in the field of Nanoscience and Nanotechnology organized by Nanomaterials to celebrate its 10th anniversary.
Technology: general issues --- History of engineering & technology --- nanocarbon --- rocket fuels --- furfuryl alcohol --- fuming nitric acid --- waste --- hypergolics --- carbon materials --- CO2 methanation --- bimetallic catalysts --- Ni-based catalysts --- promoters --- alloy nanoparticles --- bimetallic synergy --- hybrid nanoflowers --- biosynthesis --- influencing factors --- biosensing cues --- bio-catalysis --- propane --- steam reforming --- hydrogen production --- perovskite --- ruthenium --- rhodium --- La2O2CO3 --- stability --- propane steam reforming --- H2 production --- Ni --- TiO2 --- CeO2 --- YSZ --- ZrO2 --- Al2O3 --- drifts --- HDO reaction --- transition metal phosphides --- structure --- acidity --- characterization --- nanocarbon --- rocket fuels --- furfuryl alcohol --- fuming nitric acid --- waste --- hypergolics --- carbon materials --- CO2 methanation --- bimetallic catalysts --- Ni-based catalysts --- promoters --- alloy nanoparticles --- bimetallic synergy --- hybrid nanoflowers --- biosynthesis --- influencing factors --- biosensing cues --- bio-catalysis --- propane --- steam reforming --- hydrogen production --- perovskite --- ruthenium --- rhodium --- La2O2CO3 --- stability --- propane steam reforming --- H2 production --- Ni --- TiO2 --- CeO2 --- YSZ --- ZrO2 --- Al2O3 --- drifts --- HDO reaction --- transition metal phosphides --- structure --- acidity --- characterization
Choose an application
This reprint contains contributions focusing on recent developments in the design, synthesis, and characterization of nanocatalysts intended for applications in environmental protection and low carbon footprint power generation processes thanks to the overall effort of scientists and researchers for a cleaner and more sustainable future. New synthetic approaches to the production and in-depth characterization of innovative nanostructured composites and hybrid materials with well-controlled textural and surface chemistry properties that give performance advantages in a variety of important environmental and energy applications such as CO2 utilization/recycling, hydrogen and syngas production, biosensing, and biocatalysis as well as in ways to obtain useful materials from waste are included, among others. This reprint is the result of one of the cutting-edge Special Issues in the field of Nanoscience and Nanotechnology organized by Nanomaterials to celebrate its 10th anniversary.
nanocarbon --- rocket fuels --- furfuryl alcohol --- fuming nitric acid --- waste --- hypergolics --- carbon materials --- CO2 methanation --- bimetallic catalysts --- Ni-based catalysts --- promoters --- alloy nanoparticles --- bimetallic synergy --- hybrid nanoflowers --- biosynthesis --- influencing factors --- biosensing cues --- bio-catalysis --- propane --- steam reforming --- hydrogen production --- perovskite --- ruthenium --- rhodium --- La2O2CO3 --- stability --- propane steam reforming --- H2 production --- Ni --- TiO2 --- CeO2 --- YSZ --- ZrO2 --- Al2O3 --- drifts --- n/a --- HDO reaction --- transition metal phosphides --- structure --- acidity --- characterization
Choose an application
Heterogeneous catalysis played, plays, and will continue to play, a major key role in industrial processes for large-scale synthesis of commodity chemicals of global importance, and in catalytic systems that possess a critical role in energy generation and environmental protection approaches. As a result of the ongoing progress in materials science, nanotechnology, and characterizations, great advances have been achieved in heterogeneous catalysis by nanomaterials. Efficient approaches and advanced methods for the design of nano-structured composite materials (up to atomic level), subject to specific nano-morphologies with enhanced metal–metal and metal–support interactions favorable for catalysis (that enable fine-tuning of the critical properties of the designed catalysts), provide optimized catalysts with outstanding performances in numerous eco-friendly and cost-effective applications. Accordingly, great progress has been achieved involving, for example, emissions control, waste treatment, photocatalytic, bio-refinery, CO2 utilization, and fuel cells applications, as well as hydrocarbon processing for H2, added-value chemicals, and liquid fuels production. The themed Special Issue has succeeded in collecting 10 high-quality contributions that cover recent research progress in the field for a variety of applications (e.g., environment, energy, added-value chemicals/organics synthesis, and bio-transformation) declaring the prospect and importance of nanomaterials in all the directions of heterogeneous catalysis.
n/a --- B-doped --- polyoxymethylene dimethyl ethers --- porous carbon --- self-catalytic pyrolysis --- visible light --- heterostructure --- oxygen vacancies --- TiO2 nanotube --- thiadiazoles --- ethylidenethiosemicarbazides --- adsorption --- dimethoxymethane --- nano-biocatalyst --- heterogeneous catalysis --- bio-catalysis --- H2 evolution --- carbon cuboids --- trioxymethylene --- ?-glucosidase --- metal-organic frameworks --- Brønsted acid sites --- hybrid --- MXene --- oleuropein --- Rhodamine B --- antibiotics --- maleic anhydride --- oxygen evolution reaction --- photocatalyst --- 2-methyl-3-butennitrile --- halide perovskite --- zeolites --- electrospinning --- Rh --- Ti3C2Tx --- heterostructures --- hydroxytyrosol --- metal–organic frameworks --- photocatalysis --- Ni/ZrO2 --- the maximum included sphere --- functionalized olefin --- selective hydrogenation --- thiazoles --- oxidation --- visible-light --- red P --- chitosan-MgO nanocomposite --- ZnO --- g-C3N4/TiO2 --- hydroformylation --- steric constraint
Choose an application
The chemical industry is essential in the daily human life of modern society; despite the misconception about the real need for chemical production, everyone enjoys the benefit of the chemical progress. However, the chemical industry generates a large variety of products, including (i) basic chemicals, e.g., polymers, petrochemicals, and basic inorganics; (ii) specialty chemicals for crop protection, paints, inks, colorants, textiles, paper, and engineering; and (iii) consumer chemicals, including detergents, soaps, etc. For these reasons, chemists in both academia and industry are challenged with developing green and sustainable chemical production toward the full-recycling of feedstocks and waste. Aiming to improve the intensification of the process, chemists have established chemical reactions based on catalysis, as well as alternative technologies, such as continuous flow. The aim of this book is to cover promising recent research and novel trends in the field of novel catalytic reactions (homogeneous, heterogeneous, and enzymatic, as well as their combinations) in continuous flow conditions. A collection of recent contribution for conversion of starting material originated from petroleum resources or biomass into highly-added value chemicals are reported.
n/a --- dynamic mesh --- catalytic hydrodechlorination --- Pd catalyst --- fuel reactor --- catalysis --- alcohols --- Rhynchophorus ferrugineus --- ketones --- numerical prediction --- heterogeneous catalyst --- 5-hydroxymethylfurfural (HMF) --- CO2 capture --- chemical looping combustion --- SBA-15 --- biodiesel --- ?-valerolactone --- (bio) catalysis --- economizer --- erosion rate --- magnesium --- circulating fluidized bed --- continuous reactor --- erosion evolution --- kinetics --- Meerwein–Ponndorf–Verley reduction --- flow microreactor --- CFD --- micro reactor --- Oppenauer oxidation --- chlorophenols --- succinate --- aldehydes --- multiphase catalysis --- methyl levulinate --- pheromone --- zirconium --- flow chemistry --- continuous flow --- biomass --- glucose --- oxidation --- dialkyl succinates --- tube-in-tube --- aerobic --- chemo-enzymatic catalysis --- homogeneous catalysis --- lipase Cal B --- expiry period --- titanium dioxide --- Meerwein-Ponndorf-Verley reduction
Listing 1 - 7 of 7 |
Sort by
|