Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (9)


Language

English (9)


Year
From To Submit

2021 (6)

2020 (3)

Listing 1 - 9 of 9
Sort by

Book
Symmetric and Asymmetric Distributions : Theoretical Developments and Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, the advances and abilities of computer software have substantially increased the number of scientific publications that seek to introduce new probabilistic modelling frameworks, including continuous and discrete approaches, and univariate and multivariate models. Many of these theoretical and applied statistical works are related to distributions that try to break the symmetry of the normal distribution and other similar symmetric models, mainly using Azzalini's scheme. This strategy uses a symmetric distribution as a baseline case, then an extra parameter is added to the parent model to control the skewness of the new family of probability distributions. The most widespread and popular model is the one based on the normal distribution that produces the skewed normal distribution. In this Special Issue on symmetric and asymmetric distributions, works related to this topic are presented, as well as theoretical and applied proposals that have connections with and implications for this topic. Immediate applications of this line of work include different scenarios such as economics, environmental sciences, biometrics, engineering, health, etc. This Special Issue comprises nine works that follow this methodology derived using a simple process while retaining the rigor that the subject deserves. Readers of this Issue will surely find future lines of work that will enable them to achieve fruitful research results.


Book
Symmetric and Asymmetric Distributions : Theoretical Developments and Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, the advances and abilities of computer software have substantially increased the number of scientific publications that seek to introduce new probabilistic modelling frameworks, including continuous and discrete approaches, and univariate and multivariate models. Many of these theoretical and applied statistical works are related to distributions that try to break the symmetry of the normal distribution and other similar symmetric models, mainly using Azzalini's scheme. This strategy uses a symmetric distribution as a baseline case, then an extra parameter is added to the parent model to control the skewness of the new family of probability distributions. The most widespread and popular model is the one based on the normal distribution that produces the skewed normal distribution. In this Special Issue on symmetric and asymmetric distributions, works related to this topic are presented, as well as theoretical and applied proposals that have connections with and implications for this topic. Immediate applications of this line of work include different scenarios such as economics, environmental sciences, biometrics, engineering, health, etc. This Special Issue comprises nine works that follow this methodology derived using a simple process while retaining the rigor that the subject deserves. Readers of this Issue will surely find future lines of work that will enable them to achieve fruitful research results.


Book
Symmetric and Asymmetric Distributions : Theoretical Developments and Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, the advances and abilities of computer software have substantially increased the number of scientific publications that seek to introduce new probabilistic modelling frameworks, including continuous and discrete approaches, and univariate and multivariate models. Many of these theoretical and applied statistical works are related to distributions that try to break the symmetry of the normal distribution and other similar symmetric models, mainly using Azzalini's scheme. This strategy uses a symmetric distribution as a baseline case, then an extra parameter is added to the parent model to control the skewness of the new family of probability distributions. The most widespread and popular model is the one based on the normal distribution that produces the skewed normal distribution. In this Special Issue on symmetric and asymmetric distributions, works related to this topic are presented, as well as theoretical and applied proposals that have connections with and implications for this topic. Immediate applications of this line of work include different scenarios such as economics, environmental sciences, biometrics, engineering, health, etc. This Special Issue comprises nine works that follow this methodology derived using a simple process while retaining the rigor that the subject deserves. Readers of this Issue will surely find future lines of work that will enable them to achieve fruitful research results.


Book
Semiconductor Memory Devices for Hardware-Driven Neuromorphic Systems
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book aims to convey the most recent progress in hardware-driven neuromorphic systems based on semiconductor memory technologies. Machine learning systems and various types of artificial neural networks to realize the learning process have mainly focused on software technologies. Tremendous advances have been made, particularly in the area of data inference and recognition, in which humans have great superiority compared to conventional computers. In order to more effectively mimic our way of thinking in a further hardware sense, more synapse-like components in terms of integration density, completeness in realizing biological synaptic behaviors, and most importantly, energy-efficient operation capability, should be prepared. For higher resemblance with the biological nervous system, future developments ought to take power consumption into account and foster revolutions at the device level, which can be realized by memory technologies. This book consists of seven articles in which most recent research findings on neuromorphic systems are reported in the highlights of various memory devices and architectures. Synaptic devices and their behaviors, many-core neuromorphic platforms in close relation with memory, novel materials enabling the low-power synaptic operations based on memory devices are studied, along with evaluations and applications. Some of them can be practically realized due to high Si processing and structure compatibility with contemporary semiconductor memory technologies in production, which provides perspectives of neuromorphic chips for mass production.


Book
Semiconductor Memory Devices for Hardware-Driven Neuromorphic Systems
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book aims to convey the most recent progress in hardware-driven neuromorphic systems based on semiconductor memory technologies. Machine learning systems and various types of artificial neural networks to realize the learning process have mainly focused on software technologies. Tremendous advances have been made, particularly in the area of data inference and recognition, in which humans have great superiority compared to conventional computers. In order to more effectively mimic our way of thinking in a further hardware sense, more synapse-like components in terms of integration density, completeness in realizing biological synaptic behaviors, and most importantly, energy-efficient operation capability, should be prepared. For higher resemblance with the biological nervous system, future developments ought to take power consumption into account and foster revolutions at the device level, which can be realized by memory technologies. This book consists of seven articles in which most recent research findings on neuromorphic systems are reported in the highlights of various memory devices and architectures. Synaptic devices and their behaviors, many-core neuromorphic platforms in close relation with memory, novel materials enabling the low-power synaptic operations based on memory devices are studied, along with evaluations and applications. Some of them can be practically realized due to high Si processing and structure compatibility with contemporary semiconductor memory technologies in production, which provides perspectives of neuromorphic chips for mass production.


Book
Semiconductor Memory Devices for Hardware-Driven Neuromorphic Systems
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book aims to convey the most recent progress in hardware-driven neuromorphic systems based on semiconductor memory technologies. Machine learning systems and various types of artificial neural networks to realize the learning process have mainly focused on software technologies. Tremendous advances have been made, particularly in the area of data inference and recognition, in which humans have great superiority compared to conventional computers. In order to more effectively mimic our way of thinking in a further hardware sense, more synapse-like components in terms of integration density, completeness in realizing biological synaptic behaviors, and most importantly, energy-efficient operation capability, should be prepared. For higher resemblance with the biological nervous system, future developments ought to take power consumption into account and foster revolutions at the device level, which can be realized by memory technologies. This book consists of seven articles in which most recent research findings on neuromorphic systems are reported in the highlights of various memory devices and architectures. Synaptic devices and their behaviors, many-core neuromorphic platforms in close relation with memory, novel materials enabling the low-power synaptic operations based on memory devices are studied, along with evaluations and applications. Some of them can be practically realized due to high Si processing and structure compatibility with contemporary semiconductor memory technologies in production, which provides perspectives of neuromorphic chips for mass production.


Book
"3D" Parametric and Nonparametric Description of Surface Topography in Manufacturing Processes
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In present book, an analysis of the literature pertaining to parametric and non-parametric descriptions of surface topography in basics manufacturing processes (e.g., turning, milling, grinding) has been performed. The book focuses on the improvement of machining processes, with particular attention to the functional properties of surfaces, and, also, in the control of process parameters by a selected group of parameters. Here, the specific areas of interest are: surface topography analysis; advanced manufacturing metrology; surface metrology; measurement science; and measurement systems. The proposed approach of the description of surface for the functional properties of surfaces leads to the control of the whole manufacturing process, reduction of production cost by eliminating manufacturing defects and energy consumption, as well as the improvements of surface quality. The study presented in the book is a compendium of knowledge regarding surface metrology and emerging aim in a novel scientific approach.

Keywords

Technology: general issues --- profile --- two-process surface --- correlation length --- austenitization --- cryogenic --- microstructure --- microhardness --- abrasive wear --- tempering --- thermoplastic polyurethane --- heat-welded V-belt --- IR thermography --- hardness --- surface roughness --- SEM morphology --- optical microscopy --- machining --- sintered aluminum --- 3D surface roughness parameters --- surface defects --- contact profilometry --- surface topography --- thermal disturbance --- thermal expansion --- thermal chamber --- micro turning --- material removal rate --- RSM --- Ti6Al4V alloy --- tool wear --- surface texture --- anisotropy --- multiscale --- roping --- ridging --- topography --- autocorrelation function --- roughness --- EDM --- craters --- multiscale analysis --- microgeometry --- bimodal distribution --- material ratio --- parameters --- fiber-reinforced polymers --- automated fiber placement --- path planning --- abrasive water jet machining --- cutting kerf --- soda-lime glass --- radius of the cutting head trajectory --- quality --- contact mechanics --- equivalent sum rough surface --- β-phase TNTZ alloy --- nano-finishing --- magnetic abrasive finishing --- material removal --- optimization --- parametric appraisal --- circulated coins --- surface condition --- optical methods --- measurements and analysis --- mechanical engineering --- roughness analysis --- high-efficiency video coding (HEVC) --- texture feature descriptors --- texture image classification --- support vector machine (SVM) --- electroplated grinding wheel --- grinding wheel wear --- grinding wheel surface texture


Book
"3D" Parametric and Nonparametric Description of Surface Topography in Manufacturing Processes
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In present book, an analysis of the literature pertaining to parametric and non-parametric descriptions of surface topography in basics manufacturing processes (e.g., turning, milling, grinding) has been performed. The book focuses on the improvement of machining processes, with particular attention to the functional properties of surfaces, and, also, in the control of process parameters by a selected group of parameters. Here, the specific areas of interest are: surface topography analysis; advanced manufacturing metrology; surface metrology; measurement science; and measurement systems. The proposed approach of the description of surface for the functional properties of surfaces leads to the control of the whole manufacturing process, reduction of production cost by eliminating manufacturing defects and energy consumption, as well as the improvements of surface quality. The study presented in the book is a compendium of knowledge regarding surface metrology and emerging aim in a novel scientific approach.

Keywords

Technology: general issues --- profile --- two-process surface --- correlation length --- austenitization --- cryogenic --- microstructure --- microhardness --- abrasive wear --- tempering --- thermoplastic polyurethane --- heat-welded V-belt --- IR thermography --- hardness --- surface roughness --- SEM morphology --- optical microscopy --- machining --- sintered aluminum --- 3D surface roughness parameters --- surface defects --- contact profilometry --- surface topography --- thermal disturbance --- thermal expansion --- thermal chamber --- micro turning --- material removal rate --- RSM --- Ti6Al4V alloy --- tool wear --- surface texture --- anisotropy --- multiscale --- roping --- ridging --- topography --- autocorrelation function --- roughness --- EDM --- craters --- multiscale analysis --- microgeometry --- bimodal distribution --- material ratio --- parameters --- fiber-reinforced polymers --- automated fiber placement --- path planning --- abrasive water jet machining --- cutting kerf --- soda–lime glass --- radius of the cutting head trajectory --- quality --- contact mechanics --- equivalent sum rough surface --- β-phase TNTZ alloy --- nano-finishing --- magnetic abrasive finishing --- material removal --- optimization --- parametric appraisal --- circulated coins --- surface condition --- optical methods --- measurements and analysis --- mechanical engineering --- roughness analysis --- high-efficiency video coding (HEVC) --- texture feature descriptors --- texture image classification --- support vector machine (SVM) --- electroplated grinding wheel --- grinding wheel wear --- grinding wheel surface texture --- n/a --- soda-lime glass


Book
"3D" Parametric and Nonparametric Description of Surface Topography in Manufacturing Processes
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In present book, an analysis of the literature pertaining to parametric and non-parametric descriptions of surface topography in basics manufacturing processes (e.g., turning, milling, grinding) has been performed. The book focuses on the improvement of machining processes, with particular attention to the functional properties of surfaces, and, also, in the control of process parameters by a selected group of parameters. Here, the specific areas of interest are: surface topography analysis; advanced manufacturing metrology; surface metrology; measurement science; and measurement systems. The proposed approach of the description of surface for the functional properties of surfaces leads to the control of the whole manufacturing process, reduction of production cost by eliminating manufacturing defects and energy consumption, as well as the improvements of surface quality. The study presented in the book is a compendium of knowledge regarding surface metrology and emerging aim in a novel scientific approach.

Keywords

profile --- two-process surface --- correlation length --- austenitization --- cryogenic --- microstructure --- microhardness --- abrasive wear --- tempering --- thermoplastic polyurethane --- heat-welded V-belt --- IR thermography --- hardness --- surface roughness --- SEM morphology --- optical microscopy --- machining --- sintered aluminum --- 3D surface roughness parameters --- surface defects --- contact profilometry --- surface topography --- thermal disturbance --- thermal expansion --- thermal chamber --- micro turning --- material removal rate --- RSM --- Ti6Al4V alloy --- tool wear --- surface texture --- anisotropy --- multiscale --- roping --- ridging --- topography --- autocorrelation function --- roughness --- EDM --- craters --- multiscale analysis --- microgeometry --- bimodal distribution --- material ratio --- parameters --- fiber-reinforced polymers --- automated fiber placement --- path planning --- abrasive water jet machining --- cutting kerf --- soda–lime glass --- radius of the cutting head trajectory --- quality --- contact mechanics --- equivalent sum rough surface --- β-phase TNTZ alloy --- nano-finishing --- magnetic abrasive finishing --- material removal --- optimization --- parametric appraisal --- circulated coins --- surface condition --- optical methods --- measurements and analysis --- mechanical engineering --- roughness analysis --- high-efficiency video coding (HEVC) --- texture feature descriptors --- texture image classification --- support vector machine (SVM) --- electroplated grinding wheel --- grinding wheel wear --- grinding wheel surface texture --- n/a --- soda-lime glass

Listing 1 - 9 of 9
Sort by