Listing 1 - 8 of 8 |
Sort by
|
Choose an application
This reprint contains contributions focusing on recent developments in the design, synthesis, and characterization of nanocatalysts intended for applications in environmental protection and low carbon footprint power generation processes thanks to the overall effort of scientists and researchers for a cleaner and more sustainable future. New synthetic approaches to the production and in-depth characterization of innovative nanostructured composites and hybrid materials with well-controlled textural and surface chemistry properties that give performance advantages in a variety of important environmental and energy applications such as CO2 utilization/recycling, hydrogen and syngas production, biosensing, and biocatalysis as well as in ways to obtain useful materials from waste are included, among others. This reprint is the result of one of the cutting-edge Special Issues in the field of Nanoscience and Nanotechnology organized by Nanomaterials to celebrate its 10th anniversary.
Technology: general issues --- History of engineering & technology --- nanocarbon --- rocket fuels --- furfuryl alcohol --- fuming nitric acid --- waste --- hypergolics --- carbon materials --- CO2 methanation --- bimetallic catalysts --- Ni-based catalysts --- promoters --- alloy nanoparticles --- bimetallic synergy --- hybrid nanoflowers --- biosynthesis --- influencing factors --- biosensing cues --- bio-catalysis --- propane --- steam reforming --- hydrogen production --- perovskite --- ruthenium --- rhodium --- La2O2CO3 --- stability --- propane steam reforming --- H2 production --- Ni --- TiO2 --- CeO2 --- YSZ --- ZrO2 --- Al2O3 --- drifts --- HDO reaction --- transition metal phosphides --- structure --- acidity --- characterization --- nanocarbon --- rocket fuels --- furfuryl alcohol --- fuming nitric acid --- waste --- hypergolics --- carbon materials --- CO2 methanation --- bimetallic catalysts --- Ni-based catalysts --- promoters --- alloy nanoparticles --- bimetallic synergy --- hybrid nanoflowers --- biosynthesis --- influencing factors --- biosensing cues --- bio-catalysis --- propane --- steam reforming --- hydrogen production --- perovskite --- ruthenium --- rhodium --- La2O2CO3 --- stability --- propane steam reforming --- H2 production --- Ni --- TiO2 --- CeO2 --- YSZ --- ZrO2 --- Al2O3 --- drifts --- HDO reaction --- transition metal phosphides --- structure --- acidity --- characterization
Choose an application
Biomass has received significant attention as a sustainable feedstock that can replace diminishing fossil fuels in the production of value-added chemicals and energy. Many new catalytic technologies have been developed for the conversion of biomass feedstocks into valuable biofuels and bioproducts. However, many of these still suffer from several disadvantages, such as weak catalytic performance, harsh reaction conditions, a high processing cost, and questionable sustainability, which limit their further applicability/development in the immediate future. In this context, the esterification of carboxylic acids represents a very valuable solution to these problems, requiring mild reaction conditions and being advantageously integrable with many existing processes of biomass conversion. An emblematic example is the acid-catalyzed hydrothermal route for levulinic acid production, already upgraded to that of higher value alkyl levulinates, obtained by esterification or directly by biomass alcoholysis. Many other chemical processes benefit from esterification, such as the synthesis of biodiesel, which includes monoalkyl esters of long-chain fatty acids prepared from renewable vegetable oils and animal fats, or that of cellulose esters, mainly acetates, for textile uses. Even pyrolysis bio-oil should be stabilized by esterification to neutralize the acidity of carboxylic acids and moderate the reactivity of other typical biomass-derived compounds, such as sugars, furans, aldehydes, and phenolics. This Special Issue reports on the recent main advances in the homogeneous/heterogeneous catalytic conversion of model/real biomass components into ester derivatives that are extremely attractive for both the academic and industrial fields. Dr. Domenico Licursi Guest Editor
Research & information: general --- Chemistry --- eugenol --- acetylation --- flint kaolin --- mesoporous aluminosilicate --- functionalization --- heterogeneous catalysis --- n-butyl levulinate --- alcoholysis --- butanolysis --- Eucalyptus nitens --- microwaves --- biorefinery --- diesel blends --- process intensification --- hydrolysis --- solvothermal process --- alkyl levulinate --- levulinic acid --- 5-hydroxymethylfurfural --- furfural --- humins --- biomass ester derivatives --- solvothermal processing --- γ-valerolactone --- Ni-Fe bimetallic catalysts --- ABE fermentation --- Ni-MgO-Al2O3 catalyst --- biofuel --- catalytic performance --- sewage scum --- methyl (R)-10-hydroxystearate --- FAMEs --- biodiesel --- estolides --- cardoon --- waste biomass --- bio-fuels --- heterogeneous catalysts --- combustion --- PEG --- transesterification --- eugenol --- acetylation --- flint kaolin --- mesoporous aluminosilicate --- functionalization --- heterogeneous catalysis --- n-butyl levulinate --- alcoholysis --- butanolysis --- Eucalyptus nitens --- microwaves --- biorefinery --- diesel blends --- process intensification --- hydrolysis --- solvothermal process --- alkyl levulinate --- levulinic acid --- 5-hydroxymethylfurfural --- furfural --- humins --- biomass ester derivatives --- solvothermal processing --- γ-valerolactone --- Ni-Fe bimetallic catalysts --- ABE fermentation --- Ni-MgO-Al2O3 catalyst --- biofuel --- catalytic performance --- sewage scum --- methyl (R)-10-hydroxystearate --- FAMEs --- biodiesel --- estolides --- cardoon --- waste biomass --- bio-fuels --- heterogeneous catalysts --- combustion --- PEG --- transesterification
Choose an application
Biomass has received significant attention as a sustainable feedstock that can replace diminishing fossil fuels in the production of value-added chemicals and energy. Many new catalytic technologies have been developed for the conversion of biomass feedstocks into valuable biofuels and bioproducts. However, many of these still suffer from several disadvantages, such as weak catalytic performance, harsh reaction conditions, a high processing cost, and questionable sustainability, which limit their further applicability/development in the immediate future. In this context, the esterification of carboxylic acids represents a very valuable solution to these problems, requiring mild reaction conditions and being advantageously integrable with many existing processes of biomass conversion. An emblematic example is the acid-catalyzed hydrothermal route for levulinic acid production, already upgraded to that of higher value alkyl levulinates, obtained by esterification or directly by biomass alcoholysis. Many other chemical processes benefit from esterification, such as the synthesis of biodiesel, which includes monoalkyl esters of long-chain fatty acids prepared from renewable vegetable oils and animal fats, or that of cellulose esters, mainly acetates, for textile uses. Even pyrolysis bio-oil should be stabilized by esterification to neutralize the acidity of carboxylic acids and moderate the reactivity of other typical biomass-derived compounds, such as sugars, furans, aldehydes, and phenolics. This Special Issue reports on the recent main advances in the homogeneous/heterogeneous catalytic conversion of model/real biomass components into ester derivatives that are extremely attractive for both the academic and industrial fields. Dr. Domenico Licursi Guest Editor
Research & information: general --- Chemistry --- eugenol --- acetylation --- flint kaolin --- mesoporous aluminosilicate --- functionalization --- heterogeneous catalysis --- n-butyl levulinate --- alcoholysis --- butanolysis --- Eucalyptus nitens --- microwaves --- biorefinery --- diesel blends --- process intensification --- hydrolysis --- solvothermal process --- alkyl levulinate --- levulinic acid --- 5-hydroxymethylfurfural --- furfural --- humins --- biomass ester derivatives --- solvothermal processing --- γ-valerolactone --- Ni-Fe bimetallic catalysts --- ABE fermentation --- Ni-MgO-Al2O3 catalyst --- biofuel --- catalytic performance --- sewage scum --- methyl (R)-10-hydroxystearate --- FAMEs --- biodiesel --- estolides --- cardoon --- waste biomass --- bio-fuels --- heterogeneous catalysts --- combustion --- PEG --- transesterification --- n/a
Choose an application
This reprint contains contributions focusing on recent developments in the design, synthesis, and characterization of nanocatalysts intended for applications in environmental protection and low carbon footprint power generation processes thanks to the overall effort of scientists and researchers for a cleaner and more sustainable future. New synthetic approaches to the production and in-depth characterization of innovative nanostructured composites and hybrid materials with well-controlled textural and surface chemistry properties that give performance advantages in a variety of important environmental and energy applications such as CO2 utilization/recycling, hydrogen and syngas production, biosensing, and biocatalysis as well as in ways to obtain useful materials from waste are included, among others. This reprint is the result of one of the cutting-edge Special Issues in the field of Nanoscience and Nanotechnology organized by Nanomaterials to celebrate its 10th anniversary.
nanocarbon --- rocket fuels --- furfuryl alcohol --- fuming nitric acid --- waste --- hypergolics --- carbon materials --- CO2 methanation --- bimetallic catalysts --- Ni-based catalysts --- promoters --- alloy nanoparticles --- bimetallic synergy --- hybrid nanoflowers --- biosynthesis --- influencing factors --- biosensing cues --- bio-catalysis --- propane --- steam reforming --- hydrogen production --- perovskite --- ruthenium --- rhodium --- La2O2CO3 --- stability --- propane steam reforming --- H2 production --- Ni --- TiO2 --- CeO2 --- YSZ --- ZrO2 --- Al2O3 --- drifts --- n/a --- HDO reaction --- transition metal phosphides --- structure --- acidity --- characterization
Choose an application
Biomass has received significant attention as a sustainable feedstock that can replace diminishing fossil fuels in the production of value-added chemicals and energy. Many new catalytic technologies have been developed for the conversion of biomass feedstocks into valuable biofuels and bioproducts. However, many of these still suffer from several disadvantages, such as weak catalytic performance, harsh reaction conditions, a high processing cost, and questionable sustainability, which limit their further applicability/development in the immediate future. In this context, the esterification of carboxylic acids represents a very valuable solution to these problems, requiring mild reaction conditions and being advantageously integrable with many existing processes of biomass conversion. An emblematic example is the acid-catalyzed hydrothermal route for levulinic acid production, already upgraded to that of higher value alkyl levulinates, obtained by esterification or directly by biomass alcoholysis. Many other chemical processes benefit from esterification, such as the synthesis of biodiesel, which includes monoalkyl esters of long-chain fatty acids prepared from renewable vegetable oils and animal fats, or that of cellulose esters, mainly acetates, for textile uses. Even pyrolysis bio-oil should be stabilized by esterification to neutralize the acidity of carboxylic acids and moderate the reactivity of other typical biomass-derived compounds, such as sugars, furans, aldehydes, and phenolics. This Special Issue reports on the recent main advances in the homogeneous/heterogeneous catalytic conversion of model/real biomass components into ester derivatives that are extremely attractive for both the academic and industrial fields. Dr. Domenico Licursi Guest Editor
eugenol --- acetylation --- flint kaolin --- mesoporous aluminosilicate --- functionalization --- heterogeneous catalysis --- n-butyl levulinate --- alcoholysis --- butanolysis --- Eucalyptus nitens --- microwaves --- biorefinery --- diesel blends --- process intensification --- hydrolysis --- solvothermal process --- alkyl levulinate --- levulinic acid --- 5-hydroxymethylfurfural --- furfural --- humins --- biomass ester derivatives --- solvothermal processing --- γ-valerolactone --- Ni-Fe bimetallic catalysts --- ABE fermentation --- Ni-MgO-Al2O3 catalyst --- biofuel --- catalytic performance --- sewage scum --- methyl (R)-10-hydroxystearate --- FAMEs --- biodiesel --- estolides --- cardoon --- waste biomass --- bio-fuels --- heterogeneous catalysts --- combustion --- PEG --- transesterification --- n/a
Choose an application
The recent developments in the environmental applications of heterogenous catalysis and photocatalysis are described in this book, focusing on air and water purification using innovative and performing catalysts and applying new green and sustainable processes.
Technology: general issues --- Chemical engineering --- ceria --- pesticide --- photocatalysis --- photo-Fenton --- AOPs --- thin films --- ZnO --- doping --- heterogeneous photocatalysis --- VOCs --- bimetallic catalysts --- air purification --- catalytic combustion --- China --- elimination technology --- pharmaceutical industry --- advanced oxidation processes --- ozone --- ultraviolet --- bleaching --- fabrics --- industrial wastewater --- zero valent iron --- magnetite --- hematite --- alkali-activated material --- geopolymer --- blast furnace slag --- catalytic wet peroxide oxidation --- Fe-catalyst --- bisphenol A --- Mn-Zr solid solution --- toluene --- active oxygen --- combustion --- VOC --- photothermo catalysis --- ethanol --- manganese oxide --- zirconium oxide --- hydrothermal preparation --- co-precipitation --- CuFeS2 --- Fenton-like reaction --- degradation --- environmental water samples --- ciprofloxacin --- levofloxacin --- gC3N4 --- rGO --- Au nanoparticles --- n/a
Choose an application
The recent developments in the environmental applications of heterogenous catalysis and photocatalysis are described in this book, focusing on air and water purification using innovative and performing catalysts and applying new green and sustainable processes.
ceria --- pesticide --- photocatalysis --- photo-Fenton --- AOPs --- thin films --- ZnO --- doping --- heterogeneous photocatalysis --- VOCs --- bimetallic catalysts --- air purification --- catalytic combustion --- China --- elimination technology --- pharmaceutical industry --- advanced oxidation processes --- ozone --- ultraviolet --- bleaching --- fabrics --- industrial wastewater --- zero valent iron --- magnetite --- hematite --- alkali-activated material --- geopolymer --- blast furnace slag --- catalytic wet peroxide oxidation --- Fe-catalyst --- bisphenol A --- Mn-Zr solid solution --- toluene --- active oxygen --- combustion --- VOC --- photothermo catalysis --- ethanol --- manganese oxide --- zirconium oxide --- hydrothermal preparation --- co-precipitation --- CuFeS2 --- Fenton-like reaction --- degradation --- environmental water samples --- ciprofloxacin --- levofloxacin --- gC3N4 --- rGO --- Au nanoparticles --- n/a
Choose an application
The recent developments in the environmental applications of heterogenous catalysis and photocatalysis are described in this book, focusing on air and water purification using innovative and performing catalysts and applying new green and sustainable processes.
Technology: general issues --- Chemical engineering --- ceria --- pesticide --- photocatalysis --- photo-Fenton --- AOPs --- thin films --- ZnO --- doping --- heterogeneous photocatalysis --- VOCs --- bimetallic catalysts --- air purification --- catalytic combustion --- China --- elimination technology --- pharmaceutical industry --- advanced oxidation processes --- ozone --- ultraviolet --- bleaching --- fabrics --- industrial wastewater --- zero valent iron --- magnetite --- hematite --- alkali-activated material --- geopolymer --- blast furnace slag --- catalytic wet peroxide oxidation --- Fe-catalyst --- bisphenol A --- Mn-Zr solid solution --- toluene --- active oxygen --- combustion --- VOC --- photothermo catalysis --- ethanol --- manganese oxide --- zirconium oxide --- hydrothermal preparation --- co-precipitation --- CuFeS2 --- Fenton-like reaction --- degradation --- environmental water samples --- ciprofloxacin --- levofloxacin --- gC3N4 --- rGO --- Au nanoparticles --- ceria --- pesticide --- photocatalysis --- photo-Fenton --- AOPs --- thin films --- ZnO --- doping --- heterogeneous photocatalysis --- VOCs --- bimetallic catalysts --- air purification --- catalytic combustion --- China --- elimination technology --- pharmaceutical industry --- advanced oxidation processes --- ozone --- ultraviolet --- bleaching --- fabrics --- industrial wastewater --- zero valent iron --- magnetite --- hematite --- alkali-activated material --- geopolymer --- blast furnace slag --- catalytic wet peroxide oxidation --- Fe-catalyst --- bisphenol A --- Mn-Zr solid solution --- toluene --- active oxygen --- combustion --- VOC --- photothermo catalysis --- ethanol --- manganese oxide --- zirconium oxide --- hydrothermal preparation --- co-precipitation --- CuFeS2 --- Fenton-like reaction --- degradation --- environmental water samples --- ciprofloxacin --- levofloxacin --- gC3N4 --- rGO --- Au nanoparticles
Listing 1 - 8 of 8 |
Sort by
|