Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2020 (4)

Listing 1 - 4 of 4
Sort by

Book
Batteries and Supercapacitors Aging
Authors: ---
ISBN: 303928715X 3039287141 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Electrochemical energy storage is a key element of systems in a wide range of sectors, such as electro-mobility, portable devices, and renewable energy. The energy storage systems (ESSs) considered here are batteries, supercapacitors, and hybrid components such as lithium-ion capacitors. The durability of ESSs determines the total cost of ownership, the global impacts (lifecycle) on a large portion of these applications and, thus, their viability. Understanding ESS aging is a key to optimizing their design and usability in terms of their intended applications. Knowledge of ESS aging is also essential to improve their dependability (reliability, availability, maintainability, and safety). This Special Issue includes 12 research papers and 1 review article focusing on battery, supercapacitor, and hybrid capacitor aging.


Book
Energy Storage Systems for Electric Vehicles
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The global electric car fleet exceeded 7 million battery electric vehicles and plug-in hybrid electric vehicles in 2019, and will continue to increase in the future, as electrification is an important means of decreasing the greenhouse gas emissions of the transportation sector. The energy storage system is a very central component of the electric vehicle. The storage system needs to be cost-competitive, light, efficient, safe, and reliable, and to occupy little space and last for a long time. It should also be produced and disposed of in an environmentally friendly manner. This leaves many research challenges, and the purpose of this book is therefore to provide a platform for sharing the latest findings on energy storage systems for electric vehicles (electric cars, buses, aircraft, ships, etc.) Research in energy storage systems requires several sciences working together, and this book therefore include contributions from many different disciplines; this covers a wide range of topics, e.g. battery-management systems, state-of-charge and state-of-health estimation, thermal-battery-management systems, power electronics for energy storage devices, battery aging modelling, battery reuse and recycling, etc.

Keywords

History of engineering & technology --- lithium-ion batteries --- non-aqueous electrolyte --- nitrile-based solvents --- butyronitrile --- SEI forming additives --- fast charging --- power batteries --- improved second-order RC equivalent circuit --- fuzzy unscented Kalman filtering algorithm --- joint estimation --- electric bus --- battery --- energy efficiency --- environmental conditions --- hybrid electric vehicles (HEVs) --- battery life --- multi-objective energy management --- adaptive equivalent consumption minimization strategy (A-ECMS) --- pontryagin’s minimum principle (PMP) --- particle swarm optimization (PSO) --- recurrent-neural-network (RNN) --- fuel cell hybrid electric vehicle --- least squares support vector machines (LSSVM) --- driving conditions identification --- power distribution --- electric vehicle --- lithium-ion battery --- estimation --- Kalman filter --- state-of-charge --- state-of-health --- resistance --- open-circuit voltage --- battery capacity --- battery modelling and simulation --- battery testing cycler --- battery thermal model --- lithium-ion polymer battery --- SLI battery --- dual-motor energy recovery --- regenerative braking system --- CVT speed ratio control --- motor minimum loss --- energy consumption and efficiency characteristics --- braking force distribution --- oil–electric–hydraulic hybrid system --- lowest instantaneous energy costs --- energy management --- global optimization --- retired batteries --- energy storage applications --- layered bidirectional equalization --- equalization algorithm --- state of charge --- available capacity --- adaptive model-based algorithm --- square root cubature Kalman filter --- li-ion battery --- performance degradation modelling --- electrified propulsion --- battery sizing --- powertrain optimization --- optimal energy management --- heat and mass transfer --- thermal analysis --- Lithium-ion battery --- micro-channel cooling plate --- battery thermal management --- MeshWorks --- CFD --- diffusion induced stress --- hydrostatic stress influence on diffusion --- electrode particle model --- battery mechanical aging --- coulomb counting --- open circuit voltage --- state of health --- temperature --- new energy vehicle --- power battery --- battery reusing --- echelon utilization --- battery recycling --- electric vehicles --- electro-hydraulic braking --- braking intention --- mode switching --- torque coordinated control --- Electric Truck Simulator --- Electric Vehicle (EV) --- Vehicle Routing Problem (VRP) --- Traveling Salesman Problem (TSP) --- least-energy routing algorithm --- EV batteries --- metric evaluation --- AC–AC converters --- battery chargers --- power conversion harmonics --- wireless power transmission --- electrochemical–thermal model --- artificial intelligence --- artificial neural networks --- hybrid vehicles --- state-of-charge estimation (SOC) --- linear quadratic estimator --- lithium ion battery --- iron phosphate --- cell expansion --- force --- lithium-ion cobalt battery --- state of energy --- adaptive EKF SOC estimation --- linear observer SOC estimation --- MATLAB --- Simscape --- electric buses --- thermal energy storage --- latent heat storage --- metallic phase change material --- cabin heating --- fuel cell --- automated guided vehicle --- hybrid energy storage system --- model-based design --- waveforms modeling --- autoregressive models of nonstationary signals


Book
Energy Storage Systems for Electric Vehicles
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The global electric car fleet exceeded 7 million battery electric vehicles and plug-in hybrid electric vehicles in 2019, and will continue to increase in the future, as electrification is an important means of decreasing the greenhouse gas emissions of the transportation sector. The energy storage system is a very central component of the electric vehicle. The storage system needs to be cost-competitive, light, efficient, safe, and reliable, and to occupy little space and last for a long time. It should also be produced and disposed of in an environmentally friendly manner. This leaves many research challenges, and the purpose of this book is therefore to provide a platform for sharing the latest findings on energy storage systems for electric vehicles (electric cars, buses, aircraft, ships, etc.) Research in energy storage systems requires several sciences working together, and this book therefore include contributions from many different disciplines; this covers a wide range of topics, e.g. battery-management systems, state-of-charge and state-of-health estimation, thermal-battery-management systems, power electronics for energy storage devices, battery aging modelling, battery reuse and recycling, etc.

Keywords

lithium-ion batteries --- non-aqueous electrolyte --- nitrile-based solvents --- butyronitrile --- SEI forming additives --- fast charging --- power batteries --- improved second-order RC equivalent circuit --- fuzzy unscented Kalman filtering algorithm --- joint estimation --- electric bus --- battery --- energy efficiency --- environmental conditions --- hybrid electric vehicles (HEVs) --- battery life --- multi-objective energy management --- adaptive equivalent consumption minimization strategy (A-ECMS) --- pontryagin’s minimum principle (PMP) --- particle swarm optimization (PSO) --- recurrent-neural-network (RNN) --- fuel cell hybrid electric vehicle --- least squares support vector machines (LSSVM) --- driving conditions identification --- power distribution --- electric vehicle --- lithium-ion battery --- estimation --- Kalman filter --- state-of-charge --- state-of-health --- resistance --- open-circuit voltage --- battery capacity --- battery modelling and simulation --- battery testing cycler --- battery thermal model --- lithium-ion polymer battery --- SLI battery --- dual-motor energy recovery --- regenerative braking system --- CVT speed ratio control --- motor minimum loss --- energy consumption and efficiency characteristics --- braking force distribution --- oil–electric–hydraulic hybrid system --- lowest instantaneous energy costs --- energy management --- global optimization --- retired batteries --- energy storage applications --- layered bidirectional equalization --- equalization algorithm --- state of charge --- available capacity --- adaptive model-based algorithm --- square root cubature Kalman filter --- li-ion battery --- performance degradation modelling --- electrified propulsion --- battery sizing --- powertrain optimization --- optimal energy management --- heat and mass transfer --- thermal analysis --- Lithium-ion battery --- micro-channel cooling plate --- battery thermal management --- MeshWorks --- CFD --- diffusion induced stress --- hydrostatic stress influence on diffusion --- electrode particle model --- battery mechanical aging --- coulomb counting --- open circuit voltage --- state of health --- temperature --- new energy vehicle --- power battery --- battery reusing --- echelon utilization --- battery recycling --- electric vehicles --- electro-hydraulic braking --- braking intention --- mode switching --- torque coordinated control --- Electric Truck Simulator --- Electric Vehicle (EV) --- Vehicle Routing Problem (VRP) --- Traveling Salesman Problem (TSP) --- least-energy routing algorithm --- EV batteries --- metric evaluation --- AC–AC converters --- battery chargers --- power conversion harmonics --- wireless power transmission --- electrochemical–thermal model --- artificial intelligence --- artificial neural networks --- hybrid vehicles --- state-of-charge estimation (SOC) --- linear quadratic estimator --- lithium ion battery --- iron phosphate --- cell expansion --- force --- lithium-ion cobalt battery --- state of energy --- adaptive EKF SOC estimation --- linear observer SOC estimation --- MATLAB --- Simscape --- electric buses --- thermal energy storage --- latent heat storage --- metallic phase change material --- cabin heating --- fuel cell --- automated guided vehicle --- hybrid energy storage system --- model-based design --- waveforms modeling --- autoregressive models of nonstationary signals


Book
Energy Storage Systems for Electric Vehicles
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The global electric car fleet exceeded 7 million battery electric vehicles and plug-in hybrid electric vehicles in 2019, and will continue to increase in the future, as electrification is an important means of decreasing the greenhouse gas emissions of the transportation sector. The energy storage system is a very central component of the electric vehicle. The storage system needs to be cost-competitive, light, efficient, safe, and reliable, and to occupy little space and last for a long time. It should also be produced and disposed of in an environmentally friendly manner. This leaves many research challenges, and the purpose of this book is therefore to provide a platform for sharing the latest findings on energy storage systems for electric vehicles (electric cars, buses, aircraft, ships, etc.) Research in energy storage systems requires several sciences working together, and this book therefore include contributions from many different disciplines; this covers a wide range of topics, e.g. battery-management systems, state-of-charge and state-of-health estimation, thermal-battery-management systems, power electronics for energy storage devices, battery aging modelling, battery reuse and recycling, etc.

Keywords

History of engineering & technology --- lithium-ion batteries --- non-aqueous electrolyte --- nitrile-based solvents --- butyronitrile --- SEI forming additives --- fast charging --- power batteries --- improved second-order RC equivalent circuit --- fuzzy unscented Kalman filtering algorithm --- joint estimation --- electric bus --- battery --- energy efficiency --- environmental conditions --- hybrid electric vehicles (HEVs) --- battery life --- multi-objective energy management --- adaptive equivalent consumption minimization strategy (A-ECMS) --- pontryagin’s minimum principle (PMP) --- particle swarm optimization (PSO) --- recurrent-neural-network (RNN) --- fuel cell hybrid electric vehicle --- least squares support vector machines (LSSVM) --- driving conditions identification --- power distribution --- electric vehicle --- lithium-ion battery --- estimation --- Kalman filter --- state-of-charge --- state-of-health --- resistance --- open-circuit voltage --- battery capacity --- battery modelling and simulation --- battery testing cycler --- battery thermal model --- lithium-ion polymer battery --- SLI battery --- dual-motor energy recovery --- regenerative braking system --- CVT speed ratio control --- motor minimum loss --- energy consumption and efficiency characteristics --- braking force distribution --- oil–electric–hydraulic hybrid system --- lowest instantaneous energy costs --- energy management --- global optimization --- retired batteries --- energy storage applications --- layered bidirectional equalization --- equalization algorithm --- state of charge --- available capacity --- adaptive model-based algorithm --- square root cubature Kalman filter --- li-ion battery --- performance degradation modelling --- electrified propulsion --- battery sizing --- powertrain optimization --- optimal energy management --- heat and mass transfer --- thermal analysis --- Lithium-ion battery --- micro-channel cooling plate --- battery thermal management --- MeshWorks --- CFD --- diffusion induced stress --- hydrostatic stress influence on diffusion --- electrode particle model --- battery mechanical aging --- coulomb counting --- open circuit voltage --- state of health --- temperature --- new energy vehicle --- power battery --- battery reusing --- echelon utilization --- battery recycling --- electric vehicles --- electro-hydraulic braking --- braking intention --- mode switching --- torque coordinated control --- Electric Truck Simulator --- Electric Vehicle (EV) --- Vehicle Routing Problem (VRP) --- Traveling Salesman Problem (TSP) --- least-energy routing algorithm --- EV batteries --- metric evaluation --- AC–AC converters --- battery chargers --- power conversion harmonics --- wireless power transmission --- electrochemical–thermal model --- artificial intelligence --- artificial neural networks --- hybrid vehicles --- state-of-charge estimation (SOC) --- linear quadratic estimator --- lithium ion battery --- iron phosphate --- cell expansion --- force --- lithium-ion cobalt battery --- state of energy --- adaptive EKF SOC estimation --- linear observer SOC estimation --- MATLAB --- Simscape --- electric buses --- thermal energy storage --- latent heat storage --- metallic phase change material --- cabin heating --- fuel cell --- automated guided vehicle --- hybrid energy storage system --- model-based design --- waveforms modeling --- autoregressive models of nonstationary signals --- lithium-ion batteries --- non-aqueous electrolyte --- nitrile-based solvents --- butyronitrile --- SEI forming additives --- fast charging --- power batteries --- improved second-order RC equivalent circuit --- fuzzy unscented Kalman filtering algorithm --- joint estimation --- electric bus --- battery --- energy efficiency --- environmental conditions --- hybrid electric vehicles (HEVs) --- battery life --- multi-objective energy management --- adaptive equivalent consumption minimization strategy (A-ECMS) --- pontryagin’s minimum principle (PMP) --- particle swarm optimization (PSO) --- recurrent-neural-network (RNN) --- fuel cell hybrid electric vehicle --- least squares support vector machines (LSSVM) --- driving conditions identification --- power distribution --- electric vehicle --- lithium-ion battery --- estimation --- Kalman filter --- state-of-charge --- state-of-health --- resistance --- open-circuit voltage --- battery capacity --- battery modelling and simulation --- battery testing cycler --- battery thermal model --- lithium-ion polymer battery --- SLI battery --- dual-motor energy recovery --- regenerative braking system --- CVT speed ratio control --- motor minimum loss --- energy consumption and efficiency characteristics --- braking force distribution --- oil–electric–hydraulic hybrid system --- lowest instantaneous energy costs --- energy management --- global optimization --- retired batteries --- energy storage applications --- layered bidirectional equalization --- equalization algorithm --- state of charge --- available capacity --- adaptive model-based algorithm --- square root cubature Kalman filter --- li-ion battery --- performance degradation modelling --- electrified propulsion --- battery sizing --- powertrain optimization --- optimal energy management --- heat and mass transfer --- thermal analysis --- Lithium-ion battery --- micro-channel cooling plate --- battery thermal management --- MeshWorks --- CFD --- diffusion induced stress --- hydrostatic stress influence on diffusion --- electrode particle model --- battery mechanical aging --- coulomb counting --- open circuit voltage --- state of health --- temperature --- new energy vehicle --- power battery --- battery reusing --- echelon utilization --- battery recycling --- electric vehicles --- electro-hydraulic braking --- braking intention --- mode switching --- torque coordinated control --- Electric Truck Simulator --- Electric Vehicle (EV) --- Vehicle Routing Problem (VRP) --- Traveling Salesman Problem (TSP) --- least-energy routing algorithm --- EV batteries --- metric evaluation --- AC–AC converters --- battery chargers --- power conversion harmonics --- wireless power transmission --- electrochemical–thermal model --- artificial intelligence --- artificial neural networks --- hybrid vehicles --- state-of-charge estimation (SOC) --- linear quadratic estimator --- lithium ion battery --- iron phosphate --- cell expansion --- force --- lithium-ion cobalt battery --- state of energy --- adaptive EKF SOC estimation --- linear observer SOC estimation --- MATLAB --- Simscape --- electric buses --- thermal energy storage --- latent heat storage --- metallic phase change material --- cabin heating --- fuel cell --- automated guided vehicle --- hybrid energy storage system --- model-based design --- waveforms modeling --- autoregressive models of nonstationary signals

Listing 1 - 4 of 4
Sort by