Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (9)


Language

English (9)


Year
From To Submit

2021 (3)

2020 (3)

2019 (3)

Listing 1 - 9 of 9
Sort by

Book
Sensor Networks in Structural Health Monitoring: From Theory to Practice
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The intense development of novel data-driven and hybrid methods for structural health monitoring (SHM) has been demonstrated by field deployments on large-scale systems, including transport, wind energy, and building infrastructure. The actionability of SHM as an essential resource for life-cycle and resilience management is heavily dependent on the advent of low-cost and easily deployable sensors Nonetheless, in optimizing these deployments, a number of open issues remain with respect to the sensing side. These are associated with the type, configuration, and eventual processing of the information acquired from these sensors to deliver continuous behavioral signatures of the monitored structures. This book discusses the latest advances in the field of sensor networks for SHM. The focus lies both in active research on the theoretical foundations of optimally deploying and operating sensor networks and in those technological developments that might designate the next generation of sensing solutions targeted for SHM. The included contributions span the complete SHM information chain, from sensor design to configuration, data interpretation, and triggering of reactive action. The featured papers published in this Special Issue offer an overview of the state of the art and further proceed to introduce novel methods and tools. Particular attention is given to the treatment of uncertainty, which inherently describes the sensed information and the behavior of monitored systems.


Book
Sensor Networks in Structural Health Monitoring: From Theory to Practice
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The intense development of novel data-driven and hybrid methods for structural health monitoring (SHM) has been demonstrated by field deployments on large-scale systems, including transport, wind energy, and building infrastructure. The actionability of SHM as an essential resource for life-cycle and resilience management is heavily dependent on the advent of low-cost and easily deployable sensors Nonetheless, in optimizing these deployments, a number of open issues remain with respect to the sensing side. These are associated with the type, configuration, and eventual processing of the information acquired from these sensors to deliver continuous behavioral signatures of the monitored structures. This book discusses the latest advances in the field of sensor networks for SHM. The focus lies both in active research on the theoretical foundations of optimally deploying and operating sensor networks and in those technological developments that might designate the next generation of sensing solutions targeted for SHM. The included contributions span the complete SHM information chain, from sensor design to configuration, data interpretation, and triggering of reactive action. The featured papers published in this Special Issue offer an overview of the state of the art and further proceed to introduce novel methods and tools. Particular attention is given to the treatment of uncertainty, which inherently describes the sensed information and the behavior of monitored systems.


Book
Sensor Networks in Structural Health Monitoring: From Theory to Practice
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The intense development of novel data-driven and hybrid methods for structural health monitoring (SHM) has been demonstrated by field deployments on large-scale systems, including transport, wind energy, and building infrastructure. The actionability of SHM as an essential resource for life-cycle and resilience management is heavily dependent on the advent of low-cost and easily deployable sensors Nonetheless, in optimizing these deployments, a number of open issues remain with respect to the sensing side. These are associated with the type, configuration, and eventual processing of the information acquired from these sensors to deliver continuous behavioral signatures of the monitored structures. This book discusses the latest advances in the field of sensor networks for SHM. The focus lies both in active research on the theoretical foundations of optimally deploying and operating sensor networks and in those technological developments that might designate the next generation of sensing solutions targeted for SHM. The included contributions span the complete SHM information chain, from sensor design to configuration, data interpretation, and triggering of reactive action. The featured papers published in this Special Issue offer an overview of the state of the art and further proceed to introduce novel methods and tools. Particular attention is given to the treatment of uncertainty, which inherently describes the sensed information and the behavior of monitored systems.

Keywords

Technology: general issues --- probabilistic data-interpretation --- Bayesian model updating --- error-domain model falsification --- iterative asset-management --- practical applicability --- computation time --- swarm-based parallel control (SPC) --- Internet of Things (IoT) --- soil-structure interaction (SSI) --- semi-active control --- adjacent buildings --- Bayesian inference --- model updating --- modal identification --- structural dynamics --- bridges --- sensor placement optimisation --- structural health monitoring --- damage identification --- mutual information --- evolutionary optimisation --- inertial sensor fusion --- instrumented particle --- MEMS --- sediment entrainment --- sensor calibration --- frequency of entrainment --- varying environmental and operational conditions --- damage detection and localization --- Gaussian process regression --- autoregressive with exogenous inputs --- distributed sensor network --- mode shape curvatures --- probabilistic data-interpretation --- Bayesian model updating --- error-domain model falsification --- iterative asset-management --- practical applicability --- computation time --- swarm-based parallel control (SPC) --- Internet of Things (IoT) --- soil-structure interaction (SSI) --- semi-active control --- adjacent buildings --- Bayesian inference --- model updating --- modal identification --- structural dynamics --- bridges --- sensor placement optimisation --- structural health monitoring --- damage identification --- mutual information --- evolutionary optimisation --- inertial sensor fusion --- instrumented particle --- MEMS --- sediment entrainment --- sensor calibration --- frequency of entrainment --- varying environmental and operational conditions --- damage detection and localization --- Gaussian process regression --- autoregressive with exogenous inputs --- distributed sensor network --- mode shape curvatures


Book
Advances in Hydrologic Forecasts and Water Resources Management
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The impacts of climate change on water resource management, as well as increasingly severe natural disasters over the last decades, have caught global attention. Reliable and accurate hydrological forecasts are essential for efficient water resource management and the mitigation of natural disasters. While the notorious nonlinear hydrological processes make accurate forecasts a very challenging task, it requires advanced techniques to build accurate forecast models and reliable management systems. One of the newest techniques for modeling complex systems is artificial intelligence (AI). AI can replicate the way humans learn and has great capability to efficiently extract crucial information from large amounts of data to solve complex problems. The fourteen research papers published in this Special Issue contribute significantly to the uncertainty assessment of operational hydrologic forecasting under changing environmental conditions and the promotion of water resources management by using the latest advanced techniques, such as AI techniques. The fourteen contributions across four major research areas: (1) machine learning approaches to hydrologic forecasting; (2) uncertainty analysis and assessment on hydrological modeling under changing environments; (3) AI techniques for optimizing multi-objective reservoir operation; (4) adaption strategies of extreme hydrological events for hazard mitigation. The papers published in this issue will not only advance water sciences but also help policymakers to achieve more sustainable and effective water resource management.

Keywords

Research & information: general --- water resources management --- landslide --- dammed lake --- flood risk --- time-varying parameter --- GR4J model --- changing environments --- temporal transferability --- western China --- cascade hydropower reservoirs --- multi-objective optimization --- TOPSIS --- gravitational search algorithm --- opposition learning --- partial mutation --- elastic-ball modification --- Snowmelt Runoff Model --- parameter uncertainty --- data-scarce deglaciating river basin --- climate change impacts --- generalized likelihood uncertainty estimation --- Yangtze River --- cascade reservoirs --- impoundment operation --- GloFAS-Seasonal --- forecast evaluation --- small and medium-scale rivers --- highly urbanized area --- flood control --- whole region perspective --- coupled models --- flood-risk map --- hydrodynamic modelling --- Sequential Gaussian Simulation --- urban stormwater --- probabilistic forecast --- Unscented Kalman Filter --- artificial neural networks --- Three Gorges Reservoir --- Mahalanobis-Taguchi System --- grey entropy method --- signal-to-noise ratio --- degree of balance and approach --- interval number --- multi-objective optimal operation model --- feasible search space --- Pareto-front optimal solution set --- loss–benefit ratio of ecology and power generation --- elasticity coefficient --- empirical mode decomposition --- Hushan reservoir --- data synthesis --- urban hydrological model --- Generalized Likelihood Uncertainty Estimation (GLUE) --- Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) --- uncertainty analysis --- NDVI --- Yarlung Zangbo River --- machine learning model --- random forest --- Internet of Things (IoT) --- regional flood inundation depth --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- artificial intelligence --- machine learning --- multi-objective reservoir operation --- hydrologic forecasting --- uncertainty --- risk --- water resources management --- landslide --- dammed lake --- flood risk --- time-varying parameter --- GR4J model --- changing environments --- temporal transferability --- western China --- cascade hydropower reservoirs --- multi-objective optimization --- TOPSIS --- gravitational search algorithm --- opposition learning --- partial mutation --- elastic-ball modification --- Snowmelt Runoff Model --- parameter uncertainty --- data-scarce deglaciating river basin --- climate change impacts --- generalized likelihood uncertainty estimation --- Yangtze River --- cascade reservoirs --- impoundment operation --- GloFAS-Seasonal --- forecast evaluation --- small and medium-scale rivers --- highly urbanized area --- flood control --- whole region perspective --- coupled models --- flood-risk map --- hydrodynamic modelling --- Sequential Gaussian Simulation --- urban stormwater --- probabilistic forecast --- Unscented Kalman Filter --- artificial neural networks --- Three Gorges Reservoir --- Mahalanobis-Taguchi System --- grey entropy method --- signal-to-noise ratio --- degree of balance and approach --- interval number --- multi-objective optimal operation model --- feasible search space --- Pareto-front optimal solution set --- loss–benefit ratio of ecology and power generation --- elasticity coefficient --- empirical mode decomposition --- Hushan reservoir --- data synthesis --- urban hydrological model --- Generalized Likelihood Uncertainty Estimation (GLUE) --- Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) --- uncertainty analysis --- NDVI --- Yarlung Zangbo River --- machine learning model --- random forest --- Internet of Things (IoT) --- regional flood inundation depth --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- artificial intelligence --- machine learning --- multi-objective reservoir operation --- hydrologic forecasting --- uncertainty --- risk


Book
Advances in Hydrologic Forecasts and Water Resources Management
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The impacts of climate change on water resource management, as well as increasingly severe natural disasters over the last decades, have caught global attention. Reliable and accurate hydrological forecasts are essential for efficient water resource management and the mitigation of natural disasters. While the notorious nonlinear hydrological processes make accurate forecasts a very challenging task, it requires advanced techniques to build accurate forecast models and reliable management systems. One of the newest techniques for modeling complex systems is artificial intelligence (AI). AI can replicate the way humans learn and has great capability to efficiently extract crucial information from large amounts of data to solve complex problems. The fourteen research papers published in this Special Issue contribute significantly to the uncertainty assessment of operational hydrologic forecasting under changing environmental conditions and the promotion of water resources management by using the latest advanced techniques, such as AI techniques. The fourteen contributions across four major research areas: (1) machine learning approaches to hydrologic forecasting; (2) uncertainty analysis and assessment on hydrological modeling under changing environments; (3) AI techniques for optimizing multi-objective reservoir operation; (4) adaption strategies of extreme hydrological events for hazard mitigation. The papers published in this issue will not only advance water sciences but also help policymakers to achieve more sustainable and effective water resource management.

Keywords

Research & information: general --- water resources management --- landslide --- dammed lake --- flood risk --- time-varying parameter --- GR4J model --- changing environments --- temporal transferability --- western China --- cascade hydropower reservoirs --- multi-objective optimization --- TOPSIS --- gravitational search algorithm --- opposition learning --- partial mutation --- elastic-ball modification --- Snowmelt Runoff Model --- parameter uncertainty --- data-scarce deglaciating river basin --- climate change impacts --- generalized likelihood uncertainty estimation --- Yangtze River --- cascade reservoirs --- impoundment operation --- GloFAS-Seasonal --- forecast evaluation --- small and medium-scale rivers --- highly urbanized area --- flood control --- whole region perspective --- coupled models --- flood-risk map --- hydrodynamic modelling --- Sequential Gaussian Simulation --- urban stormwater --- probabilistic forecast --- Unscented Kalman Filter --- artificial neural networks --- Three Gorges Reservoir --- Mahalanobis-Taguchi System --- grey entropy method --- signal-to-noise ratio --- degree of balance and approach --- interval number --- multi-objective optimal operation model --- feasible search space --- Pareto-front optimal solution set --- loss–benefit ratio of ecology and power generation --- elasticity coefficient --- empirical mode decomposition --- Hushan reservoir --- data synthesis --- urban hydrological model --- Generalized Likelihood Uncertainty Estimation (GLUE) --- Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) --- uncertainty analysis --- NDVI --- Yarlung Zangbo River --- machine learning model --- random forest --- Internet of Things (IoT) --- regional flood inundation depth --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- artificial intelligence --- machine learning --- multi-objective reservoir operation --- hydrologic forecasting --- uncertainty --- risk


Book
Flood Forecasting Using Machine Learning Methods
Authors: --- ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Water

Keywords

natural hazards & --- artificial neural network --- flood routing --- the Three Gorges Dam --- backtracking search optimization algorithm (BSA) --- lag analysis --- artificial intelligence --- classification and regression trees (CART) --- decision tree --- real-time --- optimization --- ensemble empirical mode decomposition (EEMD) --- improved bat algorithm --- convolutional neural networks --- ANFIS --- method of tracking energy differences (MTED) --- adaptive neuro-fuzzy inference system (ANFIS) --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- disasters --- flood prediction --- ANN-based models --- flood inundation map --- ensemble machine learning --- flood forecast --- sensitivity --- hydrologic models --- phase space reconstruction --- water level forecast --- data forward prediction --- early flood warning systems --- bees algorithm --- random forest --- uncertainty --- soft computing --- data science --- hydrometeorology --- LSTM --- rating curve method --- forecasting --- superpixel --- particle swarm optimization --- high-resolution remote-sensing images --- machine learning --- support vector machine --- Lower Yellow River --- extreme event management --- runoff series --- empirical wavelet transform --- Muskingum model --- hydrograph predictions --- bat algorithm --- data scarce basins --- Wilson flood --- self-organizing map --- big data --- extreme learning machine (ELM) --- hydroinformatics --- nonlinear Muskingum model --- invasive weed optimization --- rainfall–runoff --- flood forecasting --- artificial neural networks --- flash-flood --- streamflow predictions --- precipitation-runoff --- the upper Yangtze River --- survey --- parameters --- Haraz watershed --- ANN --- time series prediction --- postprocessing --- flood susceptibility modeling --- rainfall-runoff --- deep learning --- database --- LSTM network --- ensemble technique --- hybrid neural network --- self-organizing map (SOM) --- data assimilation --- particle filter algorithm --- monthly streamflow forecasting --- Dongting Lake --- machine learning methods --- micro-model --- stopping criteria --- Google Maps --- cultural algorithm --- wolf pack algorithm --- flood events --- urban water bodies --- Karahan flood --- St. Venant equations --- hybrid & --- hydrologic model


Book
Advances in Hydrologic Forecasts and Water Resources Management
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The impacts of climate change on water resource management, as well as increasingly severe natural disasters over the last decades, have caught global attention. Reliable and accurate hydrological forecasts are essential for efficient water resource management and the mitigation of natural disasters. While the notorious nonlinear hydrological processes make accurate forecasts a very challenging task, it requires advanced techniques to build accurate forecast models and reliable management systems. One of the newest techniques for modeling complex systems is artificial intelligence (AI). AI can replicate the way humans learn and has great capability to efficiently extract crucial information from large amounts of data to solve complex problems. The fourteen research papers published in this Special Issue contribute significantly to the uncertainty assessment of operational hydrologic forecasting under changing environmental conditions and the promotion of water resources management by using the latest advanced techniques, such as AI techniques. The fourteen contributions across four major research areas: (1) machine learning approaches to hydrologic forecasting; (2) uncertainty analysis and assessment on hydrological modeling under changing environments; (3) AI techniques for optimizing multi-objective reservoir operation; (4) adaption strategies of extreme hydrological events for hazard mitigation. The papers published in this issue will not only advance water sciences but also help policymakers to achieve more sustainable and effective water resource management.

Keywords

water resources management --- landslide --- dammed lake --- flood risk --- time-varying parameter --- GR4J model --- changing environments --- temporal transferability --- western China --- cascade hydropower reservoirs --- multi-objective optimization --- TOPSIS --- gravitational search algorithm --- opposition learning --- partial mutation --- elastic-ball modification --- Snowmelt Runoff Model --- parameter uncertainty --- data-scarce deglaciating river basin --- climate change impacts --- generalized likelihood uncertainty estimation --- Yangtze River --- cascade reservoirs --- impoundment operation --- GloFAS-Seasonal --- forecast evaluation --- small and medium-scale rivers --- highly urbanized area --- flood control --- whole region perspective --- coupled models --- flood-risk map --- hydrodynamic modelling --- Sequential Gaussian Simulation --- urban stormwater --- probabilistic forecast --- Unscented Kalman Filter --- artificial neural networks --- Three Gorges Reservoir --- Mahalanobis-Taguchi System --- grey entropy method --- signal-to-noise ratio --- degree of balance and approach --- interval number --- multi-objective optimal operation model --- feasible search space --- Pareto-front optimal solution set --- loss–benefit ratio of ecology and power generation --- elasticity coefficient --- empirical mode decomposition --- Hushan reservoir --- data synthesis --- urban hydrological model --- Generalized Likelihood Uncertainty Estimation (GLUE) --- Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) --- uncertainty analysis --- NDVI --- Yarlung Zangbo River --- machine learning model --- random forest --- Internet of Things (IoT) --- regional flood inundation depth --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- artificial intelligence --- machine learning --- multi-objective reservoir operation --- hydrologic forecasting --- uncertainty --- risk


Book
Flood Forecasting Using Machine Learning Methods
Authors: --- ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Water

Keywords

natural hazards & --- artificial neural network --- flood routing --- the Three Gorges Dam --- backtracking search optimization algorithm (BSA) --- lag analysis --- artificial intelligence --- classification and regression trees (CART) --- decision tree --- real-time --- optimization --- ensemble empirical mode decomposition (EEMD) --- improved bat algorithm --- convolutional neural networks --- ANFIS --- method of tracking energy differences (MTED) --- adaptive neuro-fuzzy inference system (ANFIS) --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- disasters --- flood prediction --- ANN-based models --- flood inundation map --- ensemble machine learning --- flood forecast --- sensitivity --- hydrologic models --- phase space reconstruction --- water level forecast --- data forward prediction --- early flood warning systems --- bees algorithm --- random forest --- uncertainty --- soft computing --- data science --- hydrometeorology --- LSTM --- rating curve method --- forecasting --- superpixel --- particle swarm optimization --- high-resolution remote-sensing images --- machine learning --- support vector machine --- Lower Yellow River --- extreme event management --- runoff series --- empirical wavelet transform --- Muskingum model --- hydrograph predictions --- bat algorithm --- data scarce basins --- Wilson flood --- self-organizing map --- big data --- extreme learning machine (ELM) --- hydroinformatics --- nonlinear Muskingum model --- invasive weed optimization --- rainfall–runoff --- flood forecasting --- artificial neural networks --- flash-flood --- streamflow predictions --- precipitation-runoff --- the upper Yangtze River --- survey --- parameters --- Haraz watershed --- ANN --- time series prediction --- postprocessing --- flood susceptibility modeling --- rainfall-runoff --- deep learning --- database --- LSTM network --- ensemble technique --- hybrid neural network --- self-organizing map (SOM) --- data assimilation --- particle filter algorithm --- monthly streamflow forecasting --- Dongting Lake --- machine learning methods --- micro-model --- stopping criteria --- Google Maps --- cultural algorithm --- wolf pack algorithm --- flood events --- urban water bodies --- Karahan flood --- St. Venant equations --- hybrid & --- hydrologic model


Book
Flood Forecasting Using Machine Learning Methods
Authors: --- ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Water

Keywords

natural hazards & --- artificial neural network --- flood routing --- the Three Gorges Dam --- backtracking search optimization algorithm (BSA) --- lag analysis --- artificial intelligence --- classification and regression trees (CART) --- decision tree --- real-time --- optimization --- ensemble empirical mode decomposition (EEMD) --- improved bat algorithm --- convolutional neural networks --- ANFIS --- method of tracking energy differences (MTED) --- adaptive neuro-fuzzy inference system (ANFIS) --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- disasters --- flood prediction --- ANN-based models --- flood inundation map --- ensemble machine learning --- flood forecast --- sensitivity --- hydrologic models --- phase space reconstruction --- water level forecast --- data forward prediction --- early flood warning systems --- bees algorithm --- random forest --- uncertainty --- soft computing --- data science --- hydrometeorology --- LSTM --- rating curve method --- forecasting --- superpixel --- particle swarm optimization --- high-resolution remote-sensing images --- machine learning --- support vector machine --- Lower Yellow River --- extreme event management --- runoff series --- empirical wavelet transform --- Muskingum model --- hydrograph predictions --- bat algorithm --- data scarce basins --- Wilson flood --- self-organizing map --- big data --- extreme learning machine (ELM) --- hydroinformatics --- nonlinear Muskingum model --- invasive weed optimization --- rainfall–runoff --- flood forecasting --- artificial neural networks --- flash-flood --- streamflow predictions --- precipitation-runoff --- the upper Yangtze River --- survey --- parameters --- Haraz watershed --- ANN --- time series prediction --- postprocessing --- flood susceptibility modeling --- rainfall-runoff --- deep learning --- database --- LSTM network --- ensemble technique --- hybrid neural network --- self-organizing map (SOM) --- data assimilation --- particle filter algorithm --- monthly streamflow forecasting --- Dongting Lake --- machine learning methods --- micro-model --- stopping criteria --- Google Maps --- cultural algorithm --- wolf pack algorithm --- flood events --- urban water bodies --- Karahan flood --- St. Venant equations --- hybrid & --- hydrologic model --- natural hazards & --- artificial neural network --- flood routing --- the Three Gorges Dam --- backtracking search optimization algorithm (BSA) --- lag analysis --- artificial intelligence --- classification and regression trees (CART) --- decision tree --- real-time --- optimization --- ensemble empirical mode decomposition (EEMD) --- improved bat algorithm --- convolutional neural networks --- ANFIS --- method of tracking energy differences (MTED) --- adaptive neuro-fuzzy inference system (ANFIS) --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- disasters --- flood prediction --- ANN-based models --- flood inundation map --- ensemble machine learning --- flood forecast --- sensitivity --- hydrologic models --- phase space reconstruction --- water level forecast --- data forward prediction --- early flood warning systems --- bees algorithm --- random forest --- uncertainty --- soft computing --- data science --- hydrometeorology --- LSTM --- rating curve method --- forecasting --- superpixel --- particle swarm optimization --- high-resolution remote-sensing images --- machine learning --- support vector machine --- Lower Yellow River --- extreme event management --- runoff series --- empirical wavelet transform --- Muskingum model --- hydrograph predictions --- bat algorithm --- data scarce basins --- Wilson flood --- self-organizing map --- big data --- extreme learning machine (ELM) --- hydroinformatics --- nonlinear Muskingum model --- invasive weed optimization --- rainfall–runoff --- flood forecasting --- artificial neural networks --- flash-flood --- streamflow predictions --- precipitation-runoff --- the upper Yangtze River --- survey --- parameters --- Haraz watershed --- ANN --- time series prediction --- postprocessing --- flood susceptibility modeling --- rainfall-runoff --- deep learning --- database --- LSTM network --- ensemble technique --- hybrid neural network --- self-organizing map (SOM) --- data assimilation --- particle filter algorithm --- monthly streamflow forecasting --- Dongting Lake --- machine learning methods --- micro-model --- stopping criteria --- Google Maps --- cultural algorithm --- wolf pack algorithm --- flood events --- urban water bodies --- Karahan flood --- St. Venant equations --- hybrid & --- hydrologic model

Listing 1 - 9 of 9
Sort by