Listing 1 - 10 of 16 | << page >> |
Sort by
|
Choose an application
Atmospheric pressure plasma discharges have grown rapidly in importance in recent decades, due to the ease in handling and operation, plus their eco-friendly applications, for agriculture, food, medicine, materials and even the automotive and aerospace industries. In this context, the need for a collection of results based on plasma technologies is justified. Moreover, at the international level, the increased number of projects that translated to publications and patents in the multidisciplinary field of plasma-based technology gives researchers the opportunity to challenge their knowledge and contribute to a new era of green services and products that society demands. Therefore, this book, based on the Special Issue of “Frontiers in Atmospheric Pressure Plasma Technology” in the “Applied Physics” section of the journal Applied Sciences, provides results on some plasma-based methods and technologies for novel and possible future applications of plasmas in life sciences, biomedicine, agriculture, and the automotive industry.This book, entitled “Frontiers in Atmospheric Pressure Plasma Technology”, consists of 8 research articles, 2 review articles and 1 editorial. We know that we are only managing to address a small part of what plasma discharge can be used for, but we hope that the readers will enjoy this book and, therefore, be inspired with new ideas for future research in the field of plasma.
Technology: general issues --- cold atmospheric pressure plasma --- antimicrobial agent --- plasma medicine --- dentistry --- atmospheric pressure plasma jet (APPJ) --- optical emission spectroscopy (OES) --- plasma-surface interactions --- local surface modification --- polymers --- functionalization --- atmospheric pressure plasma --- transdermal permeability --- transdermal delivery --- nitric oxide --- wounds --- biofilm --- plasma jet --- DBD plasma --- plasma jets --- plasma properties --- reactive species --- RONS --- non-thermal plasma --- transient spark --- electrospray --- plasma-activated water --- nitrous acid --- nitrites --- atmospheric pressure plasma jet --- plasma-wine making --- plasma treatment --- UV-Vis spectroscopy --- ATR-FTIR spectroscopy --- bio-medicine application --- cold gas-discharge plasma --- digital holography --- digital holographic interferometry --- plasma diagnostics --- CAP --- electric diagnosis --- E-field measurements --- vacuum-ultraviolet spectroscopy --- patient leakage current --- power measurement --- voltage-charge plot --- OES --- bio-medical plasma applications --- surface-wave-sustained discharge --- microwave discharge --- cold atmospheric plasma --- microwave plasma torch --- cold atmospheric pressure plasma --- antimicrobial agent --- plasma medicine --- dentistry --- atmospheric pressure plasma jet (APPJ) --- optical emission spectroscopy (OES) --- plasma-surface interactions --- local surface modification --- polymers --- functionalization --- atmospheric pressure plasma --- transdermal permeability --- transdermal delivery --- nitric oxide --- wounds --- biofilm --- plasma jet --- DBD plasma --- plasma jets --- plasma properties --- reactive species --- RONS --- non-thermal plasma --- transient spark --- electrospray --- plasma-activated water --- nitrous acid --- nitrites --- atmospheric pressure plasma jet --- plasma-wine making --- plasma treatment --- UV-Vis spectroscopy --- ATR-FTIR spectroscopy --- bio-medicine application --- cold gas-discharge plasma --- digital holography --- digital holographic interferometry --- plasma diagnostics --- CAP --- electric diagnosis --- E-field measurements --- vacuum-ultraviolet spectroscopy --- patient leakage current --- power measurement --- voltage-charge plot --- OES --- bio-medical plasma applications --- surface-wave-sustained discharge --- microwave discharge --- cold atmospheric plasma --- microwave plasma torch
Choose an application
Atmospheric pressure plasma discharges have grown rapidly in importance in recent decades, due to the ease in handling and operation, plus their eco-friendly applications, for agriculture, food, medicine, materials and even the automotive and aerospace industries. In this context, the need for a collection of results based on plasma technologies is justified. Moreover, at the international level, the increased number of projects that translated to publications and patents in the multidisciplinary field of plasma-based technology gives researchers the opportunity to challenge their knowledge and contribute to a new era of green services and products that society demands. Therefore, this book, based on the Special Issue of “Frontiers in Atmospheric Pressure Plasma Technology” in the “Applied Physics” section of the journal Applied Sciences, provides results on some plasma-based methods and technologies for novel and possible future applications of plasmas in life sciences, biomedicine, agriculture, and the automotive industry.This book, entitled “Frontiers in Atmospheric Pressure Plasma Technology”, consists of 8 research articles, 2 review articles and 1 editorial. We know that we are only managing to address a small part of what plasma discharge can be used for, but we hope that the readers will enjoy this book and, therefore, be inspired with new ideas for future research in the field of plasma.
Technology: general issues --- cold atmospheric pressure plasma --- antimicrobial agent --- plasma medicine --- dentistry --- atmospheric pressure plasma jet (APPJ) --- optical emission spectroscopy (OES) --- plasma-surface interactions --- local surface modification --- polymers --- functionalization --- atmospheric pressure plasma --- transdermal permeability --- transdermal delivery --- nitric oxide --- wounds --- biofilm --- plasma jet --- DBD plasma --- plasma jets --- plasma properties --- reactive species --- RONS --- non-thermal plasma --- transient spark --- electrospray --- plasma-activated water --- nitrous acid --- nitrites --- atmospheric pressure plasma jet --- plasma-wine making --- plasma treatment --- UV-Vis spectroscopy --- ATR-FTIR spectroscopy --- bio-medicine application --- cold gas-discharge plasma --- digital holography --- digital holographic interferometry --- plasma diagnostics --- CAP --- electric diagnosis --- E-field measurements --- vacuum-ultraviolet spectroscopy --- patient leakage current --- power measurement --- voltage-charge plot --- OES --- bio-medical plasma applications --- surface-wave-sustained discharge --- microwave discharge --- cold atmospheric plasma --- microwave plasma torch --- n/a
Choose an application
Atmospheric pressure plasma discharges have grown rapidly in importance in recent decades, due to the ease in handling and operation, plus their eco-friendly applications, for agriculture, food, medicine, materials and even the automotive and aerospace industries. In this context, the need for a collection of results based on plasma technologies is justified. Moreover, at the international level, the increased number of projects that translated to publications and patents in the multidisciplinary field of plasma-based technology gives researchers the opportunity to challenge their knowledge and contribute to a new era of green services and products that society demands. Therefore, this book, based on the Special Issue of “Frontiers in Atmospheric Pressure Plasma Technology” in the “Applied Physics” section of the journal Applied Sciences, provides results on some plasma-based methods and technologies for novel and possible future applications of plasmas in life sciences, biomedicine, agriculture, and the automotive industry.This book, entitled “Frontiers in Atmospheric Pressure Plasma Technology”, consists of 8 research articles, 2 review articles and 1 editorial. We know that we are only managing to address a small part of what plasma discharge can be used for, but we hope that the readers will enjoy this book and, therefore, be inspired with new ideas for future research in the field of plasma.
cold atmospheric pressure plasma --- antimicrobial agent --- plasma medicine --- dentistry --- atmospheric pressure plasma jet (APPJ) --- optical emission spectroscopy (OES) --- plasma-surface interactions --- local surface modification --- polymers --- functionalization --- atmospheric pressure plasma --- transdermal permeability --- transdermal delivery --- nitric oxide --- wounds --- biofilm --- plasma jet --- DBD plasma --- plasma jets --- plasma properties --- reactive species --- RONS --- non-thermal plasma --- transient spark --- electrospray --- plasma-activated water --- nitrous acid --- nitrites --- atmospheric pressure plasma jet --- plasma-wine making --- plasma treatment --- UV-Vis spectroscopy --- ATR-FTIR spectroscopy --- bio-medicine application --- cold gas-discharge plasma --- digital holography --- digital holographic interferometry --- plasma diagnostics --- CAP --- electric diagnosis --- E-field measurements --- vacuum-ultraviolet spectroscopy --- patient leakage current --- power measurement --- voltage-charge plot --- OES --- bio-medical plasma applications --- surface-wave-sustained discharge --- microwave discharge --- cold atmospheric plasma --- microwave plasma torch --- n/a
Choose an application
There is growing interest in the use of physical plasmas (ionized gases) for biomedical applications, especially in the framework of so-called “plasma medicine”, which exploits the action of low-power, atmospheric pressure plasmas for therapeutic purposes. Such plasmas are “cold plasmas”, in the sense that only electrons have a high temperature, whereas ions and the neutral gas particles are at or near room temperature. As a consequence, the “plasma flame” can be directly applied to living matter without appreciable thermal load. Reactive chemical species, charged particles, visible and UV radiation, and electric fields are interaction channels of the plasma with pathogens, cells, and tissues, which can trigger a variety of different responses. Possible applications include disinfection, wound healing, cancer treatment, non-thermal blood coagulation, just to mention some. The understanding of the mechanisms of plasma action on living matter requires a strongly interdisciplinary approach, with competencies ranging from plasma physics and technology to chemistry, to biology and finally to medicine. This book is a collection of work that explores recent advances in this field.
n/a --- decontamination --- plasma-treated water --- tissue damage --- regeneration --- Escherichia coli --- water treatment --- kINPen --- biofilm --- dielectric barrier discharge --- metamorphosis --- non-thermal plasma --- lymphocytes --- low-current arc --- keratinocytes --- ultrastructure --- tap water --- bio-target --- head and neck squamous cell carcinoma --- infection --- oxygen plasma --- tadpoles --- dentistry --- apoptosis --- fear-free dentistry --- plasma-surface interaction --- plasma medicine --- macrophages --- plasma-activated medium --- reactive oxygen species --- developmental plasticity --- reactive species --- atmospheric pressure plasma jet (APPJ) --- cold atmospheric plasmas --- jet plasma --- cold atmospheric plasma jet --- bio-decontamination --- atmospheric pressure plasma --- cold argon plasma --- RONS --- plasma device --- blood coagulation --- mitochondria --- antimicrobial activity --- tooth whitening --- cold atmospheric plasma (CAP) --- plasma --- inductively-limited discharge
Choose an application
The use of medical devices (e.g., catheters, implants, and probes) is a common and essential part of medical care for both diagnostic and therapeutic purposes. However, these devices quite frequently lead to the incidence of infections due to the colonization of their abiotic surfaces by biofilm-growing microorganisms, which are progressively resistant to antimicrobial therapies. Several methods based on anti-infective biomaterials that repel microbes have been developed to combat device-related infections. Among these strategies, surface coating with antibiotics (e.g., beta-lactams), natural compounds (e.g., polyphenols), or inorganic elements (e.g., silver and copper nanoparticles) has been widely recognized as exhibiting broad-spectrum bactericidal or bacteriostatic activity. So, in order to achieve a better therapeutic response, it is crucial to understand how these infections are different from others. This will allow us to find new biomaterials characterized by antifouling coatings with repellent properties or low adhesion towards microorganisms, or antimicrobial coatings that are capable of killing microbes approaching the surface, improving biomaterial functionalization strategies and supporting tissues’ bio-integration.
Medicine --- Candida --- biofilms --- diabetes --- medical devices --- candidiasis --- metabolic disorder --- hyperglycemia --- infection --- Candida glabrata --- candidemia --- echinocandins --- resistance --- micafungin --- caspofungin --- in vivo --- titanium dioxide --- nanotubes --- autoclaving --- titanium alloy --- biocompatibility --- wettability --- mechanical properties --- silver nanoparticles --- titanium dioxide nanotubes --- silver ions release --- biointegration --- antimicrobial activity --- polyethylene terephthalate --- PET --- electrospinning --- nanofibers --- antimicrobial agents --- Taguchi method --- antimicrobial efficiency --- cold atmospheric-pressure plasma jet (CAPJ) --- Escherichia coli --- DNA double-strand breaks --- scanning electron microscopy --- Ti6Al4V implants --- anodization process --- XPS --- genotoxicity assessment --- anti-inflammatory properties --- oral biofilm --- infection control --- Streptococcus mutans --- Candida spp. --- natural compounds --- antimicrobial resistance --- n/a
Choose an application
This book focuses on recent advances in plasma technology and its application to metals, alloys, and related materials. Surface modifications, material syntheses, cutting and surface coatings are performed using low-pressure plasma or atmospheric-pressure plasma. The contributions of this book include the discussion of a wide scope of plasma technologies applied to materials. Plasma is a versatile tool that can be applied in many types of material processing. New material processing applications of plasmas and new plasma technologies are being developed rapidly. We hope that this book can contribute new knowledge to the plasma material research society.
cathodic plasma electrolysis deposition --- Al2O3 coating --- oxidation --- solution surface tension --- nitrogen plasma --- Ga droplet --- GaN nanodot --- transmission electron microscopy --- wurtzite --- Zinc-blende --- plasma cutting --- cut heat affected zone --- mini-tensile test --- steel plate --- residual stress --- atmospheric pressure plasma jet --- platinum --- tin oxide --- dye-sensitized solar cells --- chloroplatinic acid --- tin chloride --- self-lubricating --- composite coating --- titanium --- plasma electrolytic oxidation (PEO) --- polytetrafluoroethylene (PTFE) --- plasma nitriding --- atmospheric-pressure plasma --- nitrogen dose amount --- hydrogen fraction --- void --- Ti6Al4V lattice structure --- Ag-doped TiO2 anatase --- spark plasma sintering --- selective laser melting --- additive manufacturing --- antibacterial and photoactivity applications --- aluminum --- surface --- plasma --- nitrogen --- postdischarge --- atmospheric pressure --- wettability --- organic-inorganic halide perovskite --- air plasma --- plasma treatment --- optoelectronic properties --- morphology --- n/a
Choose an application
The use of medical devices (e.g., catheters, implants, and probes) is a common and essential part of medical care for both diagnostic and therapeutic purposes. However, these devices quite frequently lead to the incidence of infections due to the colonization of their abiotic surfaces by biofilm-growing microorganisms, which are progressively resistant to antimicrobial therapies. Several methods based on anti-infective biomaterials that repel microbes have been developed to combat device-related infections. Among these strategies, surface coating with antibiotics (e.g., beta-lactams), natural compounds (e.g., polyphenols), or inorganic elements (e.g., silver and copper nanoparticles) has been widely recognized as exhibiting broad-spectrum bactericidal or bacteriostatic activity. So, in order to achieve a better therapeutic response, it is crucial to understand how these infections are different from others. This will allow us to find new biomaterials characterized by antifouling coatings with repellent properties or low adhesion towards microorganisms, or antimicrobial coatings that are capable of killing microbes approaching the surface, improving biomaterial functionalization strategies and supporting tissues’ bio-integration.
Candida --- biofilms --- diabetes --- medical devices --- candidiasis --- metabolic disorder --- hyperglycemia --- infection --- Candida glabrata --- candidemia --- echinocandins --- resistance --- micafungin --- caspofungin --- in vivo --- titanium dioxide --- nanotubes --- autoclaving --- titanium alloy --- biocompatibility --- wettability --- mechanical properties --- silver nanoparticles --- titanium dioxide nanotubes --- silver ions release --- biointegration --- antimicrobial activity --- polyethylene terephthalate --- PET --- electrospinning --- nanofibers --- antimicrobial agents --- Taguchi method --- antimicrobial efficiency --- cold atmospheric-pressure plasma jet (CAPJ) --- Escherichia coli --- DNA double-strand breaks --- scanning electron microscopy --- Ti6Al4V implants --- anodization process --- XPS --- genotoxicity assessment --- anti-inflammatory properties --- oral biofilm --- infection control --- Streptococcus mutans --- Candida spp. --- natural compounds --- antimicrobial resistance --- n/a
Choose an application
The use of medical devices (e.g., catheters, implants, and probes) is a common and essential part of medical care for both diagnostic and therapeutic purposes. However, these devices quite frequently lead to the incidence of infections due to the colonization of their abiotic surfaces by biofilm-growing microorganisms, which are progressively resistant to antimicrobial therapies. Several methods based on anti-infective biomaterials that repel microbes have been developed to combat device-related infections. Among these strategies, surface coating with antibiotics (e.g., beta-lactams), natural compounds (e.g., polyphenols), or inorganic elements (e.g., silver and copper nanoparticles) has been widely recognized as exhibiting broad-spectrum bactericidal or bacteriostatic activity. So, in order to achieve a better therapeutic response, it is crucial to understand how these infections are different from others. This will allow us to find new biomaterials characterized by antifouling coatings with repellent properties or low adhesion towards microorganisms, or antimicrobial coatings that are capable of killing microbes approaching the surface, improving biomaterial functionalization strategies and supporting tissues’ bio-integration.
Medicine --- Candida --- biofilms --- diabetes --- medical devices --- candidiasis --- metabolic disorder --- hyperglycemia --- infection --- Candida glabrata --- candidemia --- echinocandins --- resistance --- micafungin --- caspofungin --- in vivo --- titanium dioxide --- nanotubes --- autoclaving --- titanium alloy --- biocompatibility --- wettability --- mechanical properties --- silver nanoparticles --- titanium dioxide nanotubes --- silver ions release --- biointegration --- antimicrobial activity --- polyethylene terephthalate --- PET --- electrospinning --- nanofibers --- antimicrobial agents --- Taguchi method --- antimicrobial efficiency --- cold atmospheric-pressure plasma jet (CAPJ) --- Escherichia coli --- DNA double-strand breaks --- scanning electron microscopy --- Ti6Al4V implants --- anodization process --- XPS --- genotoxicity assessment --- anti-inflammatory properties --- oral biofilm --- infection control --- Streptococcus mutans --- Candida spp. --- natural compounds --- antimicrobial resistance --- Candida --- biofilms --- diabetes --- medical devices --- candidiasis --- metabolic disorder --- hyperglycemia --- infection --- Candida glabrata --- candidemia --- echinocandins --- resistance --- micafungin --- caspofungin --- in vivo --- titanium dioxide --- nanotubes --- autoclaving --- titanium alloy --- biocompatibility --- wettability --- mechanical properties --- silver nanoparticles --- titanium dioxide nanotubes --- silver ions release --- biointegration --- antimicrobial activity --- polyethylene terephthalate --- PET --- electrospinning --- nanofibers --- antimicrobial agents --- Taguchi method --- antimicrobial efficiency --- cold atmospheric-pressure plasma jet (CAPJ) --- Escherichia coli --- DNA double-strand breaks --- scanning electron microscopy --- Ti6Al4V implants --- anodization process --- XPS --- genotoxicity assessment --- anti-inflammatory properties --- oral biofilm --- infection control --- Streptococcus mutans --- Candida spp. --- natural compounds --- antimicrobial resistance
Choose an application
This book focuses on recent advances in plasma technology and its application to metals, alloys, and related materials. Surface modifications, material syntheses, cutting and surface coatings are performed using low-pressure plasma or atmospheric-pressure plasma. The contributions of this book include the discussion of a wide scope of plasma technologies applied to materials. Plasma is a versatile tool that can be applied in many types of material processing. New material processing applications of plasmas and new plasma technologies are being developed rapidly. We hope that this book can contribute new knowledge to the plasma material research society.
Technology: general issues --- cathodic plasma electrolysis deposition --- Al2O3 coating --- oxidation --- solution surface tension --- nitrogen plasma --- Ga droplet --- GaN nanodot --- transmission electron microscopy --- wurtzite --- Zinc-blende --- plasma cutting --- cut heat affected zone --- mini-tensile test --- steel plate --- residual stress --- atmospheric pressure plasma jet --- platinum --- tin oxide --- dye-sensitized solar cells --- chloroplatinic acid --- tin chloride --- self-lubricating --- composite coating --- titanium --- plasma electrolytic oxidation (PEO) --- polytetrafluoroethylene (PTFE) --- plasma nitriding --- atmospheric-pressure plasma --- nitrogen dose amount --- hydrogen fraction --- void --- Ti6Al4V lattice structure --- Ag-doped TiO2 anatase --- spark plasma sintering --- selective laser melting --- additive manufacturing --- antibacterial and photoactivity applications --- aluminum --- surface --- plasma --- nitrogen --- postdischarge --- atmospheric pressure --- wettability --- organic-inorganic halide perovskite --- air plasma --- plasma treatment --- optoelectronic properties --- morphology --- cathodic plasma electrolysis deposition --- Al2O3 coating --- oxidation --- solution surface tension --- nitrogen plasma --- Ga droplet --- GaN nanodot --- transmission electron microscopy --- wurtzite --- Zinc-blende --- plasma cutting --- cut heat affected zone --- mini-tensile test --- steel plate --- residual stress --- atmospheric pressure plasma jet --- platinum --- tin oxide --- dye-sensitized solar cells --- chloroplatinic acid --- tin chloride --- self-lubricating --- composite coating --- titanium --- plasma electrolytic oxidation (PEO) --- polytetrafluoroethylene (PTFE) --- plasma nitriding --- atmospheric-pressure plasma --- nitrogen dose amount --- hydrogen fraction --- void --- Ti6Al4V lattice structure --- Ag-doped TiO2 anatase --- spark plasma sintering --- selective laser melting --- additive manufacturing --- antibacterial and photoactivity applications --- aluminum --- surface --- plasma --- nitrogen --- postdischarge --- atmospheric pressure --- wettability --- organic-inorganic halide perovskite --- air plasma --- plasma treatment --- optoelectronic properties --- morphology
Choose an application
This book focuses on recent advances in plasma technology and its application to metals, alloys, and related materials. Surface modifications, material syntheses, cutting and surface coatings are performed using low-pressure plasma or atmospheric-pressure plasma. The contributions of this book include the discussion of a wide scope of plasma technologies applied to materials. Plasma is a versatile tool that can be applied in many types of material processing. New material processing applications of plasmas and new plasma technologies are being developed rapidly. We hope that this book can contribute new knowledge to the plasma material research society.
Technology: general issues --- cathodic plasma electrolysis deposition --- Al2O3 coating --- oxidation --- solution surface tension --- nitrogen plasma --- Ga droplet --- GaN nanodot --- transmission electron microscopy --- wurtzite --- Zinc-blende --- plasma cutting --- cut heat affected zone --- mini-tensile test --- steel plate --- residual stress --- atmospheric pressure plasma jet --- platinum --- tin oxide --- dye-sensitized solar cells --- chloroplatinic acid --- tin chloride --- self-lubricating --- composite coating --- titanium --- plasma electrolytic oxidation (PEO) --- polytetrafluoroethylene (PTFE) --- plasma nitriding --- atmospheric-pressure plasma --- nitrogen dose amount --- hydrogen fraction --- void --- Ti6Al4V lattice structure --- Ag-doped TiO2 anatase --- spark plasma sintering --- selective laser melting --- additive manufacturing --- antibacterial and photoactivity applications --- aluminum --- surface --- plasma --- nitrogen --- postdischarge --- atmospheric pressure --- wettability --- organic-inorganic halide perovskite --- air plasma --- plasma treatment --- optoelectronic properties --- morphology --- n/a
Listing 1 - 10 of 16 | << page >> |
Sort by
|