Narrow your search

Library

FARO (11)

KU Leuven (11)

LUCA School of Arts (11)

Odisee (11)

Thomas More Kempen (11)

Thomas More Mechelen (11)

UCLL (11)

ULiège (11)

VIVES (11)

Vlaams Parlement (11)

More...

Resource type

book (26)


Language

English (26)


Year
From To Submit

2022 (9)

2021 (11)

2020 (5)

2018 (1)

Listing 1 - 10 of 26 << page
of 3
>>
Sort by

Book
Frontiers in Atmospheric Pressure Plasma Technology
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Atmospheric pressure plasma discharges have grown rapidly in importance in recent decades, due to the ease in handling and operation, plus their eco-friendly applications, for agriculture, food, medicine, materials and even the automotive and aerospace industries. In this context, the need for a collection of results based on plasma technologies is justified. Moreover, at the international level, the increased number of projects that translated to publications and patents in the multidisciplinary field of plasma-based technology gives researchers the opportunity to challenge their knowledge and contribute to a new era of green services and products that society demands. Therefore, this book, based on the Special Issue of “Frontiers in Atmospheric Pressure Plasma Technology” in the “Applied Physics” section of the journal Applied Sciences, provides results on some plasma-based methods and technologies for novel and possible future applications of plasmas in life sciences, biomedicine, agriculture, and the automotive industry.This book, entitled “Frontiers in Atmospheric Pressure Plasma Technology”, consists of 8 research articles, 2 review articles and 1 editorial. We know that we are only managing to address a small part of what plasma discharge can be used for, but we hope that the readers will enjoy this book and, therefore, be inspired with new ideas for future research in the field of plasma.


Book
Frontiers in Atmospheric Pressure Plasma Technology
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Atmospheric pressure plasma discharges have grown rapidly in importance in recent decades, due to the ease in handling and operation, plus their eco-friendly applications, for agriculture, food, medicine, materials and even the automotive and aerospace industries. In this context, the need for a collection of results based on plasma technologies is justified. Moreover, at the international level, the increased number of projects that translated to publications and patents in the multidisciplinary field of plasma-based technology gives researchers the opportunity to challenge their knowledge and contribute to a new era of green services and products that society demands. Therefore, this book, based on the Special Issue of “Frontiers in Atmospheric Pressure Plasma Technology” in the “Applied Physics” section of the journal Applied Sciences, provides results on some plasma-based methods and technologies for novel and possible future applications of plasmas in life sciences, biomedicine, agriculture, and the automotive industry.This book, entitled “Frontiers in Atmospheric Pressure Plasma Technology”, consists of 8 research articles, 2 review articles and 1 editorial. We know that we are only managing to address a small part of what plasma discharge can be used for, but we hope that the readers will enjoy this book and, therefore, be inspired with new ideas for future research in the field of plasma.


Book
Frontiers in Atmospheric Pressure Plasma Technology
Author:
Year: 2022 Publisher: Basel MDPI Books

Loading...
Export citation

Choose an application

Bookmark

Abstract

Atmospheric pressure plasma discharges have grown rapidly in importance in recent decades, due to the ease in handling and operation, plus their eco-friendly applications, for agriculture, food, medicine, materials and even the automotive and aerospace industries. In this context, the need for a collection of results based on plasma technologies is justified. Moreover, at the international level, the increased number of projects that translated to publications and patents in the multidisciplinary field of plasma-based technology gives researchers the opportunity to challenge their knowledge and contribute to a new era of green services and products that society demands. Therefore, this book, based on the Special Issue of “Frontiers in Atmospheric Pressure Plasma Technology” in the “Applied Physics” section of the journal Applied Sciences, provides results on some plasma-based methods and technologies for novel and possible future applications of plasmas in life sciences, biomedicine, agriculture, and the automotive industry.This book, entitled “Frontiers in Atmospheric Pressure Plasma Technology”, consists of 8 research articles, 2 review articles and 1 editorial. We know that we are only managing to address a small part of what plasma discharge can be used for, but we hope that the readers will enjoy this book and, therefore, be inspired with new ideas for future research in the field of plasma.


Book
Plasma Biology
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Irving Langmuir coined the name “plasma” to describe an ionized gas back in 1927. Just over 90 years later, plasma technology is becoming increasingly important in our daily life. For example, in the medical field and dentistry, plasma is used as a method of disinfection and sterilization. Moreover, additional potential novel applications of this technology in different forms of therapy have been proposed. In the agricultural sector, plasma technology could contribute to higher crop yields by enhancing seed germination and the growth of plants, as well as the preservation of foods by disinfection. Plasma technology could also be utilized in environmental applications, including water treatment and remediation, as well as treatment of exhaust gases. Although recent extensive studies have uncovered the broad potential of plasma technology, its mechanisms of action remain unclear. Therefore, further studies aimed at elucidating the molecular mechanisms of plasma technology are required. This book is composed of original articles and reviews investigating the molecular mechanisms of plasma biology. Relevant areas of study include applications in plasma medicine, plasma agriculture, as well as plasma chemistry. Studies on potential therapeutic approaches using plasma itself and plasma-treated solutions are also included.

Keywords

Technology: general issues --- cold jet atmospheric pressure plasma --- reactive oxygen and nitrogen species --- backbone cleavage --- hydroxylation --- carbonyl formation --- cold atmospheric plasma --- autophagy --- silymarin nanoemulsion --- PI3K/mTOR pathway --- wound healing --- oncology --- regenerative medicine --- plasma --- atmospheric pressure plasma jets --- large-scale imaging --- machine learning --- cancer treatment --- cellular imaging --- reactive oxygen species --- mesoporous silica nanoparticles --- biomaterials --- bone regeneration --- cytotoxicity --- proliferation --- osteogenic differentiation --- plasma-activated medium --- TRAIL --- DR5 --- apoptosis --- ROS/RNS --- atmospheric-pressure plasma --- titanium --- amine --- mesenchymal stem cells --- antibiotic resistant bacteria --- antibiotic resistance gene --- disinfection --- E. coli --- inactivation --- sterilization --- cell migration --- endothelial cells VEGF --- gynaecological oncology --- vulva cancer --- risk factors --- plasma tissue interaction --- premalignant lesions --- cancer development --- patient stratification --- individualised profiling --- predictive preventive personalised medicine (PPPM/3PM) --- treatment --- Candida albicans --- cold plasma treatment --- genome --- hydrolytic enzyme activity --- carbon assimilation --- drug susceptibility --- malignant melanoma --- acidification --- nitrite --- acidified nitrite --- nitration --- membrane damage --- CAP --- cancer --- cold atmospheric pressure plasma --- hydrogen peroxide --- hypochlorous acid --- moDCs --- peroxynitrite --- RNS --- ROS --- non-thermal plasma --- biological activity --- breast cancer --- solution plasma process --- aqueous solutions --- chitin --- chitosan --- degradation --- deacetylation --- non-thermal atmospheric pressure plasma --- Pectobacteriaceae --- Dickeya spp. --- Pectobacterium spp. --- antibacterial --- plant protection --- agriculture --- selective cancer treatment --- reaction network --- mathematical modeling --- n/a --- Mdm2–p53 --- plasma treatment --- molecular dynamic (MD) simulations --- Mdm2-p53


Book
Plasma Biology
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Irving Langmuir coined the name “plasma” to describe an ionized gas back in 1927. Just over 90 years later, plasma technology is becoming increasingly important in our daily life. For example, in the medical field and dentistry, plasma is used as a method of disinfection and sterilization. Moreover, additional potential novel applications of this technology in different forms of therapy have been proposed. In the agricultural sector, plasma technology could contribute to higher crop yields by enhancing seed germination and the growth of plants, as well as the preservation of foods by disinfection. Plasma technology could also be utilized in environmental applications, including water treatment and remediation, as well as treatment of exhaust gases. Although recent extensive studies have uncovered the broad potential of plasma technology, its mechanisms of action remain unclear. Therefore, further studies aimed at elucidating the molecular mechanisms of plasma technology are required. This book is composed of original articles and reviews investigating the molecular mechanisms of plasma biology. Relevant areas of study include applications in plasma medicine, plasma agriculture, as well as plasma chemistry. Studies on potential therapeutic approaches using plasma itself and plasma-treated solutions are also included.

Keywords

cold jet atmospheric pressure plasma --- reactive oxygen and nitrogen species --- backbone cleavage --- hydroxylation --- carbonyl formation --- cold atmospheric plasma --- autophagy --- silymarin nanoemulsion --- PI3K/mTOR pathway --- wound healing --- oncology --- regenerative medicine --- plasma --- atmospheric pressure plasma jets --- large-scale imaging --- machine learning --- cancer treatment --- cellular imaging --- reactive oxygen species --- mesoporous silica nanoparticles --- biomaterials --- bone regeneration --- cytotoxicity --- proliferation --- osteogenic differentiation --- plasma-activated medium --- TRAIL --- DR5 --- apoptosis --- ROS/RNS --- atmospheric-pressure plasma --- titanium --- amine --- mesenchymal stem cells --- antibiotic resistant bacteria --- antibiotic resistance gene --- disinfection --- E. coli --- inactivation --- sterilization --- cell migration --- endothelial cells VEGF --- gynaecological oncology --- vulva cancer --- risk factors --- plasma tissue interaction --- premalignant lesions --- cancer development --- patient stratification --- individualised profiling --- predictive preventive personalised medicine (PPPM/3PM) --- treatment --- Candida albicans --- cold plasma treatment --- genome --- hydrolytic enzyme activity --- carbon assimilation --- drug susceptibility --- malignant melanoma --- acidification --- nitrite --- acidified nitrite --- nitration --- membrane damage --- CAP --- cancer --- cold atmospheric pressure plasma --- hydrogen peroxide --- hypochlorous acid --- moDCs --- peroxynitrite --- RNS --- ROS --- non-thermal plasma --- biological activity --- breast cancer --- solution plasma process --- aqueous solutions --- chitin --- chitosan --- degradation --- deacetylation --- non-thermal atmospheric pressure plasma --- Pectobacteriaceae --- Dickeya spp. --- Pectobacterium spp. --- antibacterial --- plant protection --- agriculture --- selective cancer treatment --- reaction network --- mathematical modeling --- n/a --- Mdm2–p53 --- plasma treatment --- molecular dynamic (MD) simulations --- Mdm2-p53


Book
Plasma Biology
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Irving Langmuir coined the name “plasma” to describe an ionized gas back in 1927. Just over 90 years later, plasma technology is becoming increasingly important in our daily life. For example, in the medical field and dentistry, plasma is used as a method of disinfection and sterilization. Moreover, additional potential novel applications of this technology in different forms of therapy have been proposed. In the agricultural sector, plasma technology could contribute to higher crop yields by enhancing seed germination and the growth of plants, as well as the preservation of foods by disinfection. Plasma technology could also be utilized in environmental applications, including water treatment and remediation, as well as treatment of exhaust gases. Although recent extensive studies have uncovered the broad potential of plasma technology, its mechanisms of action remain unclear. Therefore, further studies aimed at elucidating the molecular mechanisms of plasma technology are required. This book is composed of original articles and reviews investigating the molecular mechanisms of plasma biology. Relevant areas of study include applications in plasma medicine, plasma agriculture, as well as plasma chemistry. Studies on potential therapeutic approaches using plasma itself and plasma-treated solutions are also included.

Keywords

Technology: general issues --- cold jet atmospheric pressure plasma --- reactive oxygen and nitrogen species --- backbone cleavage --- hydroxylation --- carbonyl formation --- cold atmospheric plasma --- autophagy --- silymarin nanoemulsion --- PI3K/mTOR pathway --- wound healing --- oncology --- regenerative medicine --- plasma --- atmospheric pressure plasma jets --- large-scale imaging --- machine learning --- cancer treatment --- cellular imaging --- reactive oxygen species --- mesoporous silica nanoparticles --- biomaterials --- bone regeneration --- cytotoxicity --- proliferation --- osteogenic differentiation --- plasma-activated medium --- TRAIL --- DR5 --- apoptosis --- ROS/RNS --- atmospheric-pressure plasma --- titanium --- amine --- mesenchymal stem cells --- antibiotic resistant bacteria --- antibiotic resistance gene --- disinfection --- E. coli --- inactivation --- sterilization --- cell migration --- endothelial cells VEGF --- gynaecological oncology --- vulva cancer --- risk factors --- plasma tissue interaction --- premalignant lesions --- cancer development --- patient stratification --- individualised profiling --- predictive preventive personalised medicine (PPPM/3PM) --- treatment --- Candida albicans --- cold plasma treatment --- genome --- hydrolytic enzyme activity --- carbon assimilation --- drug susceptibility --- malignant melanoma --- acidification --- nitrite --- acidified nitrite --- nitration --- membrane damage --- CAP --- cancer --- cold atmospheric pressure plasma --- hydrogen peroxide --- hypochlorous acid --- moDCs --- peroxynitrite --- RNS --- ROS --- non-thermal plasma --- biological activity --- breast cancer --- solution plasma process --- aqueous solutions --- chitin --- chitosan --- degradation --- deacetylation --- non-thermal atmospheric pressure plasma --- Pectobacteriaceae --- Dickeya spp. --- Pectobacterium spp. --- antibacterial --- plant protection --- agriculture --- selective cancer treatment --- reaction network --- mathematical modeling --- Mdm2-p53 --- plasma treatment --- molecular dynamic (MD) simulations


Book
Plasma Technology for Biomedical Applications
Author:
ISBN: 3039287370 3039287362 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

There is growing interest in the use of physical plasmas (ionized gases) for biomedical applications, especially in the framework of so-called “plasma medicine”, which exploits the action of low-power, atmospheric pressure plasmas for therapeutic purposes. Such plasmas are “cold plasmas”, in the sense that only electrons have a high temperature, whereas ions and the neutral gas particles are at or near room temperature. As a consequence, the “plasma flame” can be directly applied to living matter without appreciable thermal load. Reactive chemical species, charged particles, visible and UV radiation, and electric fields are interaction channels of the plasma with pathogens, cells, and tissues, which can trigger a variety of different responses. Possible applications include disinfection, wound healing, cancer treatment, non-thermal blood coagulation, just to mention some. The understanding of the mechanisms of plasma action on living matter requires a strongly interdisciplinary approach, with competencies ranging from plasma physics and technology to chemistry, to biology and finally to medicine. This book is a collection of work that explores recent advances in this field.


Book
Plasma based Synthesis and Modification of Nanomaterials
Author:
ISBN: 3039213962 3039213954 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, entitled “Plasma-Based Synthesis and Modification of Nanomaterials” is a collection of nine original research articles devoted to the application of different atmospheric pressure (APPs) and low-pressure (LPPs) plasmas for the synthesis or modification of various nanomaterials (NMs) of exceptional properties. These articles also show the structural and morphological characterization of the synthesized NMs and their further interesting and unique applications in different areas of science and technology. The readers interested in the capabilities of plasma-based treatments will quickly be convinced that APPs and LPPs enable one to efficiently synthesize or modify differentiated NMs using a minimal number of operations. Indeed, the presented procedures are eco-friendly and usually involve single-step processes, thus considerably lowering labor investment and costs. As a result, the production of new NMs and their functionalization is more straightforward and can be carried out on a much larger scale compared to other methods and procedures involving complex chemical treatments and processes. The size and morphology, as well as the structural and optical properties of the resulting NMs are tunable and tailorable. In addition to the desirable and reproducible physical dimensions, crystallinity, functionality, and spectral properties of the resultant NMs, the NMs fabricated and/or modified with the aid of APPs are commonly ready-to-use prior to their specific applications, without any initial pre-treatments.


Book
Plasmas Processes Applied on Metals and Alloys
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on recent advances in plasma technology and its application to metals, alloys, and related materials. Surface modifications, material syntheses, cutting and surface coatings are performed using low-pressure plasma or atmospheric-pressure plasma. The contributions of this book include the discussion of a wide scope of plasma technologies applied to materials. Plasma is a versatile tool that can be applied in many types of material processing. New material processing applications of plasmas and new plasma technologies are being developed rapidly. We hope that this book can contribute new knowledge to the plasma material research society.


Book
Plasmas Processes Applied on Metals and Alloys
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on recent advances in plasma technology and its application to metals, alloys, and related materials. Surface modifications, material syntheses, cutting and surface coatings are performed using low-pressure plasma or atmospheric-pressure plasma. The contributions of this book include the discussion of a wide scope of plasma technologies applied to materials. Plasma is a versatile tool that can be applied in many types of material processing. New material processing applications of plasmas and new plasma technologies are being developed rapidly. We hope that this book can contribute new knowledge to the plasma material research society.

Listing 1 - 10 of 26 << page
of 3
>>
Sort by