Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

Vlaams Parlement (2)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2020 (5)

Listing 1 - 5 of 5
Sort by

Book
Selected Papers from Coastlab18 Conference
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents 16 selected papers from the 7th International Conference on The Application of Physical Modelling in Coastal and Port Engineering and Science, Coastlab18. The conference was organized in Santander, Spain, from 22 to 26 May, 2018, by the Instituto de Hidráulica Ambiental de la Universidad de Cantabria, IHCantabria. Coastlab18 welcomed 175 attendees from 18 different countries. The technical program included three renowned keynote lectures and 120 presentations focused on theoretical and practical aspects related to physical modelling in the field of coastal and ocean engineering. Coastal and ocean structures, breakwaters, revetments, laboratory technologies, measurement systems, coastal field measurement and monitoring, combined physical and numerical modelling, physical modelling case studies, tsunamis, and coastal hydrodynamics were the main topics covered in the conference. This book attempts to cover, as completely as possible, all the topics presented during the conference. The papers were accepted after a peer-review process based on their full text.

Keywords

History of engineering & technology --- hydraulic stability --- breaking wave conditions --- low-crested structures --- mound breakwaters --- armor layer --- overtopping --- dikes --- sea defenses --- bimodal seas --- swell --- oblique waves --- crossing seas --- wave basin --- mound breakwater --- armor stability --- Cubipod® --- breaking waves --- non-overtopping --- horizontal foreshore --- regular waves --- Stepped revetment --- wave impact --- physical model test --- rock slopes --- damage characterization --- damage parameters --- physical model tests --- linear waves --- nonlinear waves --- wavemaker theory --- wavemaker applicability --- outdoor wave basin --- long-term development --- vegetation development --- ecosystem services --- nature-based --- vertical barrier --- semi-submerged --- wind waves --- experiments --- laboratory --- operational system --- wave forecast --- wave modelling --- Mediterranean Sea --- monitoring program --- beach management --- bichromatic waves --- reflection separation --- bound waves --- stability --- erosion --- sea level rise --- repetition tests --- berm --- wave flume --- length effect --- aquaculture --- drag --- inertia --- Abbott-Firestone Curve --- laboratory tests --- physical model experiments --- scouring --- shingle foreshore --- sloping wall --- combined field experiment and numerical modeling --- overwash --- wave run-up --- infragravity waves --- XBeach --- coastal flooding --- dune erosion --- landslide waves --- tsunamis --- laboratory experiments --- momentum balance --- numerical wave modeling --- vertical cylinder --- DNS model --- pressure gradient --- wave force --- scour and shear stress --- hydraulic stability --- breaking wave conditions --- low-crested structures --- mound breakwaters --- armor layer --- overtopping --- dikes --- sea defenses --- bimodal seas --- swell --- oblique waves --- crossing seas --- wave basin --- mound breakwater --- armor stability --- Cubipod® --- breaking waves --- non-overtopping --- horizontal foreshore --- regular waves --- Stepped revetment --- wave impact --- physical model test --- rock slopes --- damage characterization --- damage parameters --- physical model tests --- linear waves --- nonlinear waves --- wavemaker theory --- wavemaker applicability --- outdoor wave basin --- long-term development --- vegetation development --- ecosystem services --- nature-based --- vertical barrier --- semi-submerged --- wind waves --- experiments --- laboratory --- operational system --- wave forecast --- wave modelling --- Mediterranean Sea --- monitoring program --- beach management --- bichromatic waves --- reflection separation --- bound waves --- stability --- erosion --- sea level rise --- repetition tests --- berm --- wave flume --- length effect --- aquaculture --- drag --- inertia --- Abbott-Firestone Curve --- laboratory tests --- physical model experiments --- scouring --- shingle foreshore --- sloping wall --- combined field experiment and numerical modeling --- overwash --- wave run-up --- infragravity waves --- XBeach --- coastal flooding --- dune erosion --- landslide waves --- tsunamis --- laboratory experiments --- momentum balance --- numerical wave modeling --- vertical cylinder --- DNS model --- pressure gradient --- wave force --- scour and shear stress


Book
Selected Papers from Coastlab18 Conference
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents 16 selected papers from the 7th International Conference on The Application of Physical Modelling in Coastal and Port Engineering and Science, Coastlab18. The conference was organized in Santander, Spain, from 22 to 26 May, 2018, by the Instituto de Hidráulica Ambiental de la Universidad de Cantabria, IHCantabria. Coastlab18 welcomed 175 attendees from 18 different countries. The technical program included three renowned keynote lectures and 120 presentations focused on theoretical and practical aspects related to physical modelling in the field of coastal and ocean engineering. Coastal and ocean structures, breakwaters, revetments, laboratory technologies, measurement systems, coastal field measurement and monitoring, combined physical and numerical modelling, physical modelling case studies, tsunamis, and coastal hydrodynamics were the main topics covered in the conference. This book attempts to cover, as completely as possible, all the topics presented during the conference. The papers were accepted after a peer-review process based on their full text.

Keywords

History of engineering & technology --- hydraulic stability --- breaking wave conditions --- low-crested structures --- mound breakwaters --- armor layer --- overtopping --- dikes --- sea defenses --- bimodal seas --- swell --- oblique waves --- crossing seas --- wave basin --- mound breakwater --- armor stability --- Cubipod® --- breaking waves --- non-overtopping --- horizontal foreshore --- regular waves --- Stepped revetment --- wave impact --- physical model test --- rock slopes --- damage characterization --- damage parameters --- physical model tests --- linear waves --- nonlinear waves --- wavemaker theory --- wavemaker applicability --- outdoor wave basin --- long-term development --- vegetation development --- ecosystem services --- nature-based --- vertical barrier --- semi-submerged --- wind waves --- experiments --- laboratory --- operational system --- wave forecast --- wave modelling --- Mediterranean Sea --- monitoring program --- beach management --- bichromatic waves --- reflection separation --- bound waves --- stability --- erosion --- sea level rise --- repetition tests --- berm --- wave flume --- length effect --- aquaculture --- drag --- inertia --- Abbott–Firestone Curve --- laboratory tests --- physical model experiments --- scouring --- shingle foreshore --- sloping wall --- combined field experiment and numerical modeling --- overwash --- wave run-up --- infragravity waves --- XBeach --- coastal flooding --- dune erosion --- landslide waves --- tsunamis --- laboratory experiments --- momentum balance --- numerical wave modeling --- vertical cylinder --- DNS model --- pressure gradient --- wave force --- scour and shear stress --- n/a --- Abbott-Firestone Curve


Book
Advances in Modelling and Prediction on the Impact of Human Activities and Extreme Events on Environments
Authors: --- --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Rapid urbanization and industrialization have progressively caused severe impacts on the mountainous, river, coastal environments, and have increased the risks for people living in these areas. Human activities have changed the ecosystems, and, hence, it is important to determine ways to predict these consequences to enable the preservation and restoration of these key areas. Furthermore, extreme events attributed to climate change are becoming more frequent, aggravating the entire scenario and introducing ulterior uncertainties for the accurate and efficient management of these areas to protect the environment, as well as the health and safety of people. Climate change is altering the rain and extreme heat, as well as inducing other weather mutations. All these lead to more frequent natural disasters such as flood events, erosions, and contamination and spreading of pollutants. Therefore, efforts need to be devoted to investigating the underlying causes, and to identifying feasible mitigation and adaptation strategies to reduce the negative impacts on both the environment and citizens. In support of this aim, the selected papers in this book covered a wide range of issues that are mainly relevant to the following: i) the numerical and experimental characterization of complex flow conditions under specific circumstances induced by the natural hazards; ii) the effect of climate change on the hydrological processes in the mountainous, river and coastal environments, iii) the protection of ecosystems and the restoration of areas damaged by the effects of the climate change and human activities.

Keywords

check dam --- hydrologic response --- sediment transport --- InHM --- Loess Plateau --- stratification effect --- inertia effect --- secondary flow --- meandering --- sediment laden flows --- pier scour --- non-uniform sediment --- armor layer --- equilibrium scour depth processes --- clear water scour condition --- suffusion --- internal stability --- grain size distribution (GSD) --- ecological operation --- multi-scale --- decomposition-coordination --- hydrologic alterations --- embankments --- overtopping failure --- material point method --- water–soil interactions --- numerical simulation --- SPH (Smoothed Particle Hydrodynamics) --- water-related natural hazards --- sediment scouring --- dense granular flow --- fast landslide --- surge wave --- flooding on complex topography --- HPC (High Performance Computing) --- FOSS (Free Open Source Software) --- climate change --- water levels --- causes and implications --- Qinghai Lake, Tibetan Plateau --- rainfall patterns --- rainfall-runoff --- soil erosion --- slope length --- slope gradient --- non-homogeneous debris flow --- viscous coefficients --- intermittent debris flows --- energy conversion --- focusing waves --- wave amplitude spectra --- space-time parameter --- experimental investigations --- InVEST model --- wetland --- ecosystem service assessment --- value analysis --- schistosomiasis prevention --- ISPH --- liquid sloshing --- water jet flow --- impact pressure --- excitation frequency --- Navier-Stokes equation --- SST k-ω turbulence model --- vortex-induced vibration (VIV) --- Arbitrary Lagrangian Eulerian (ALE) method --- finite element method (FEM) --- rock–soil contact area --- fissure flow --- karst rocky desertification --- runoff --- rainfall simulation --- Smooth Particle Hydrodynamics (SPH) --- porous media --- mathematical model --- coastal structure --- ocean and engineering --- turbulence --- emergent vegetation --- flexible vegetation --- rigid vegetation --- coherent structures --- shear layer --- elastic actuator line model --- OpenFOAM --- NREL 5 MW wind turbine --- aeroelastic performance --- check dam system --- sedimentary land --- flood control --- dam break --- SWE --- SPH --- openMP --- numerical modelling --- computational time --- experimental modelling --- scouring --- smoothed-particle hydrodynamics --- flooding --- dam-break --- debris flows --- urban evolution --- natural hazard


Book
Selected Papers from Coastlab18 Conference
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents 16 selected papers from the 7th International Conference on The Application of Physical Modelling in Coastal and Port Engineering and Science, Coastlab18. The conference was organized in Santander, Spain, from 22 to 26 May, 2018, by the Instituto de Hidráulica Ambiental de la Universidad de Cantabria, IHCantabria. Coastlab18 welcomed 175 attendees from 18 different countries. The technical program included three renowned keynote lectures and 120 presentations focused on theoretical and practical aspects related to physical modelling in the field of coastal and ocean engineering. Coastal and ocean structures, breakwaters, revetments, laboratory technologies, measurement systems, coastal field measurement and monitoring, combined physical and numerical modelling, physical modelling case studies, tsunamis, and coastal hydrodynamics were the main topics covered in the conference. This book attempts to cover, as completely as possible, all the topics presented during the conference. The papers were accepted after a peer-review process based on their full text.

Keywords

hydraulic stability --- breaking wave conditions --- low-crested structures --- mound breakwaters --- armor layer --- overtopping --- dikes --- sea defenses --- bimodal seas --- swell --- oblique waves --- crossing seas --- wave basin --- mound breakwater --- armor stability --- Cubipod® --- breaking waves --- non-overtopping --- horizontal foreshore --- regular waves --- Stepped revetment --- wave impact --- physical model test --- rock slopes --- damage characterization --- damage parameters --- physical model tests --- linear waves --- nonlinear waves --- wavemaker theory --- wavemaker applicability --- outdoor wave basin --- long-term development --- vegetation development --- ecosystem services --- nature-based --- vertical barrier --- semi-submerged --- wind waves --- experiments --- laboratory --- operational system --- wave forecast --- wave modelling --- Mediterranean Sea --- monitoring program --- beach management --- bichromatic waves --- reflection separation --- bound waves --- stability --- erosion --- sea level rise --- repetition tests --- berm --- wave flume --- length effect --- aquaculture --- drag --- inertia --- Abbott–Firestone Curve --- laboratory tests --- physical model experiments --- scouring --- shingle foreshore --- sloping wall --- combined field experiment and numerical modeling --- overwash --- wave run-up --- infragravity waves --- XBeach --- coastal flooding --- dune erosion --- landslide waves --- tsunamis --- laboratory experiments --- momentum balance --- numerical wave modeling --- vertical cylinder --- DNS model --- pressure gradient --- wave force --- scour and shear stress --- n/a --- Abbott-Firestone Curve


Book
Advances in Modelling and Prediction on the Impact of Human Activities and Extreme Events on Environments
Authors: --- --- --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Rapid urbanization and industrialization have progressively caused severe impacts on the mountainous, river, coastal environments, and have increased the risks for people living in these areas. Human activities have changed the ecosystems, and, hence, it is important to determine ways to predict these consequences to enable the preservation and restoration of these key areas. Furthermore, extreme events attributed to climate change are becoming more frequent, aggravating the entire scenario and introducing ulterior uncertainties for the accurate and efficient management of these areas to protect the environment, as well as the health and safety of people. Climate change is altering the rain and extreme heat, as well as inducing other weather mutations. All these lead to more frequent natural disasters such as flood events, erosions, and contamination and spreading of pollutants. Therefore, efforts need to be devoted to investigating the underlying causes, and to identifying feasible mitigation and adaptation strategies to reduce the negative impacts on both the environment and citizens. In support of this aim, the selected papers in this book covered a wide range of issues that are mainly relevant to the following: i) the numerical and experimental characterization of complex flow conditions under specific circumstances induced by the natural hazards; ii) the effect of climate change on the hydrological processes in the mountainous, river and coastal environments, iii) the protection of ecosystems and the restoration of areas damaged by the effects of the climate change and human activities.

Keywords

Research & information: general --- check dam --- hydrologic response --- sediment transport --- InHM --- Loess Plateau --- stratification effect --- inertia effect --- secondary flow --- meandering --- sediment laden flows --- pier scour --- non-uniform sediment --- armor layer --- equilibrium scour depth processes --- clear water scour condition --- suffusion --- internal stability --- grain size distribution (GSD) --- ecological operation --- multi-scale --- decomposition-coordination --- hydrologic alterations --- embankments --- overtopping failure --- material point method --- water–soil interactions --- numerical simulation --- SPH (Smoothed Particle Hydrodynamics) --- water-related natural hazards --- sediment scouring --- dense granular flow --- fast landslide --- surge wave --- flooding on complex topography --- HPC (High Performance Computing) --- FOSS (Free Open Source Software) --- climate change --- water levels --- causes and implications --- Qinghai Lake, Tibetan Plateau --- rainfall patterns --- rainfall-runoff --- soil erosion --- slope length --- slope gradient --- non-homogeneous debris flow --- viscous coefficients --- intermittent debris flows --- energy conversion --- focusing waves --- wave amplitude spectra --- space-time parameter --- experimental investigations --- InVEST model --- wetland --- ecosystem service assessment --- value analysis --- schistosomiasis prevention --- ISPH --- liquid sloshing --- water jet flow --- impact pressure --- excitation frequency --- Navier-Stokes equation --- SST k-ω turbulence model --- vortex-induced vibration (VIV) --- Arbitrary Lagrangian Eulerian (ALE) method --- finite element method (FEM) --- rock–soil contact area --- fissure flow --- karst rocky desertification --- runoff --- rainfall simulation --- Smooth Particle Hydrodynamics (SPH) --- porous media --- mathematical model --- coastal structure --- ocean and engineering --- turbulence --- emergent vegetation --- flexible vegetation --- rigid vegetation --- coherent structures --- shear layer --- elastic actuator line model --- OpenFOAM --- NREL 5 MW wind turbine --- aeroelastic performance --- check dam system --- sedimentary land --- flood control --- dam break --- SWE --- SPH --- openMP --- numerical modelling --- computational time --- experimental modelling --- scouring --- smoothed-particle hydrodynamics --- flooding --- dam-break --- debris flows --- urban evolution --- natural hazard --- check dam --- hydrologic response --- sediment transport --- InHM --- Loess Plateau --- stratification effect --- inertia effect --- secondary flow --- meandering --- sediment laden flows --- pier scour --- non-uniform sediment --- armor layer --- equilibrium scour depth processes --- clear water scour condition --- suffusion --- internal stability --- grain size distribution (GSD) --- ecological operation --- multi-scale --- decomposition-coordination --- hydrologic alterations --- embankments --- overtopping failure --- material point method --- water–soil interactions --- numerical simulation --- SPH (Smoothed Particle Hydrodynamics) --- water-related natural hazards --- sediment scouring --- dense granular flow --- fast landslide --- surge wave --- flooding on complex topography --- HPC (High Performance Computing) --- FOSS (Free Open Source Software) --- climate change --- water levels --- causes and implications --- Qinghai Lake, Tibetan Plateau --- rainfall patterns --- rainfall-runoff --- soil erosion --- slope length --- slope gradient --- non-homogeneous debris flow --- viscous coefficients --- intermittent debris flows --- energy conversion --- focusing waves --- wave amplitude spectra --- space-time parameter --- experimental investigations --- InVEST model --- wetland --- ecosystem service assessment --- value analysis --- schistosomiasis prevention --- ISPH --- liquid sloshing --- water jet flow --- impact pressure --- excitation frequency --- Navier-Stokes equation --- SST k-ω turbulence model --- vortex-induced vibration (VIV) --- Arbitrary Lagrangian Eulerian (ALE) method --- finite element method (FEM) --- rock–soil contact area --- fissure flow --- karst rocky desertification --- runoff --- rainfall simulation --- Smooth Particle Hydrodynamics (SPH) --- porous media --- mathematical model --- coastal structure --- ocean and engineering --- turbulence --- emergent vegetation --- flexible vegetation --- rigid vegetation --- coherent structures --- shear layer --- elastic actuator line model --- OpenFOAM --- NREL 5 MW wind turbine --- aeroelastic performance --- check dam system --- sedimentary land --- flood control --- dam break --- SWE --- SPH --- openMP --- numerical modelling --- computational time --- experimental modelling --- scouring --- smoothed-particle hydrodynamics --- flooding --- dam-break --- debris flows --- urban evolution --- natural hazard

Listing 1 - 5 of 5
Sort by