Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

Vlaams Parlement (2)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2022 (3)

2020 (2)

Listing 1 - 5 of 5
Sort by

Book
Land Degradation Assessment with Earth Observation
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue (SI) on “Land Degradation Assessment with Earth Observation” comprises 17 original research papers with a focus on land degradation in arid, semiarid and dry-subhumid areas (i.e., desertification) in addition to temperate rangelands, grasslands, woodlands and the humid tropics. The studies cover different spatial, spectral and temporal scales and employ a wealth of different optical and radar sensors. Some studies incorporate time-series analysis techniques that assess the general trend of vegetation or the timing and duration of the reduction in biological productivity caused by land degradation. As anticipated from the latest trend in Earth Observation (EO) literature, some studies utilize the cloud-computing infrastructure of Google Earth Engine to cope with the unprecedented volume of data involved in current methodological approaches. This SI clearly demonstrates the ever-increasing relevance of EO technologies when it comes to assessing and monitoring land degradation. With the recently published IPCC Reports informing us of the severe impacts and risks to terrestrial and freshwater ecosystems and the ecosystem services they provide, the EO scientific community has a clear obligation to increase its efforts to address any remaining gaps—some of which have been identified in this SI—and produce highly accurate and relevant land-degradation assessment and monitoring tools.

Keywords

Research & information: general --- bfast --- Mann-Kendall --- Sen's slope --- East Africa --- NDVI --- breakpoint analysis --- vegetation trends --- greening --- browning --- Kenya --- Uganda --- trend analysis --- land use --- land cover --- spatial heterogeneity --- mining development --- geographically weighted regression (GWR) --- Mann-Kendall --- arid and semi-arid areas --- salinization --- irrigated systems --- Niger River basin --- salinity index --- vegetation index --- TI-NDVI --- Sentinel-2 images --- high temporal resolution --- wind erosion modeling --- RWEQ --- GEE --- central Asia --- spatial-temporal variation --- land degradation --- archetypes --- self-organizing maps --- drivers --- savannah --- Nigeria --- reference levels --- REDD+ --- greenhouse gas emissions --- Xishuangbanna --- monitoring and reporting --- Normalised Difference Vegetation Index (NDVI) --- Vegetation Condition Index (VCI) --- drought --- land use-land cover --- remote sensing --- Botswana --- developing countries --- Google Earth Engine --- Landsat time series analysis --- semi-arid areas --- sustainable land management programmes --- precipitation --- breakpoints and timeseries analysis --- ecosystem structural change --- BFAST --- land degradation neutrality --- SDG --- land productivity --- Landsat --- vegetation-precipitation relationship --- soil organic carbon --- Kobresia pygmaea community --- unmanned aerial vehicle --- Gaofen satellite --- spatial distribution --- aridity index --- satellite-based aridity index --- remote sensing index --- salinized land degradation index (SDI) --- Amu Darya delta (ADD) --- satellite imagery --- gully mapping --- machine learning --- random forest --- support vector machines --- South Africa --- semi-arid environment --- shrub encroachment --- slangbos --- Earth observation --- time series --- Sentinel-1 --- Sentinel-2 --- Synthetic Aperture Radar (SAR) --- Soil Adjusted Vegetation Index (SAVI) --- Kyrgyzstan --- pastures --- MODIS --- land surface phenology --- drought impacts --- drought adaptation --- drought index --- vegetation resilience --- drought vulnerability --- standardized precipitation evapotranspiration index --- AVHRR --- bfast --- Mann-Kendall --- Sen's slope --- East Africa --- NDVI --- breakpoint analysis --- vegetation trends --- greening --- browning --- Kenya --- Uganda --- trend analysis --- land use --- land cover --- spatial heterogeneity --- mining development --- geographically weighted regression (GWR) --- Mann-Kendall --- arid and semi-arid areas --- salinization --- irrigated systems --- Niger River basin --- salinity index --- vegetation index --- TI-NDVI --- Sentinel-2 images --- high temporal resolution --- wind erosion modeling --- RWEQ --- GEE --- central Asia --- spatial-temporal variation --- land degradation --- archetypes --- self-organizing maps --- drivers --- savannah --- Nigeria --- reference levels --- REDD+ --- greenhouse gas emissions --- Xishuangbanna --- monitoring and reporting --- Normalised Difference Vegetation Index (NDVI) --- Vegetation Condition Index (VCI) --- drought --- land use-land cover --- remote sensing --- Botswana --- developing countries --- Google Earth Engine --- Landsat time series analysis --- semi-arid areas --- sustainable land management programmes --- precipitation --- breakpoints and timeseries analysis --- ecosystem structural change --- BFAST --- land degradation neutrality --- SDG --- land productivity --- Landsat --- vegetation-precipitation relationship --- soil organic carbon --- Kobresia pygmaea community --- unmanned aerial vehicle --- Gaofen satellite --- spatial distribution --- aridity index --- satellite-based aridity index --- remote sensing index --- salinized land degradation index (SDI) --- Amu Darya delta (ADD) --- satellite imagery --- gully mapping --- machine learning --- random forest --- support vector machines --- South Africa --- semi-arid environment --- shrub encroachment --- slangbos --- Earth observation --- time series --- Sentinel-1 --- Sentinel-2 --- Synthetic Aperture Radar (SAR) --- Soil Adjusted Vegetation Index (SAVI) --- Kyrgyzstan --- pastures --- MODIS --- land surface phenology --- drought impacts --- drought adaptation --- drought index --- vegetation resilience --- drought vulnerability --- standardized precipitation evapotranspiration index --- AVHRR


Book
Water Supply and Water Scarcity
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Book includes selected papers that has been published in the Water journal Special Issue (SI) on Water Supply and Water Scarcity. Moreover, an overview of the SI is included. The papers selected for publication in the SI include review and research papers on water history, on water management issues under water scarcity regimes, on rainwater harvesting, on water quality and degradation, and on climatic variability impacts on water resources. Overall, the issue identify and highlight the main challenges in water sector, and particularly in management and protection of water resources and in use of alternative (non-conventional) water resources, especially in areas with demographic change and climate vulnerability in order to achieve sustainable and secure water supply. Furthermore, general guidelines and possible solutions for an improved and sophisticated water management system are proposed and discussed, such as the adoption of advanced technological solutions and practices that improve water-use efficiency and the use of alternative water resources, to address the growing environmental and health issues and to reduce the emerging conflicts among water users.

Keywords

Research & information: general --- Environmental economics --- drought --- early warning --- water scarcity --- water supply --- routine monitoring --- hydrologic modeling --- remote sensing --- GIS --- alternative water source --- rainwater harvesting --- arid and semi-arid areas --- hydraulics --- dividing flow manifold --- showerheads --- sprays --- dissolved oxygen --- climate change --- water budget --- general circulation model --- modeling --- stream flow changes --- soil water --- RCP --- Aculeo Lagoon --- Chile --- water demands --- water management --- rainwater harvesting system --- multi-storey residential building --- end-uses --- economic feasibility --- satisfaction survey --- ecological water demand --- reservoir ecological operation --- MIKE 11 model --- PHABSIM model --- watershed management --- water quality --- conventional farming --- organic farming --- nitrate --- residual sodium carbonate --- sodium adsorption ratio --- total dissolved solids --- irrigation practices --- Aztecs --- bronze age --- Byzantine times --- Chinese dynasties --- Egyptians --- Harappans --- Hellenic civilizations --- Incas --- medieval times --- Mayas --- Mesopotamia --- Minoans --- modern times --- Ottoman times --- Romans --- water resources management --- water reuse --- climate variability --- circular economy --- sustainability --- long-term --- regional water supply planning --- alternative water supply --- projects --- expenditures --- investments --- conservation --- intermittent water supply --- pressure monitoring --- unreliable water supply --- pipe breaks --- water distribution system --- water system operation --- water scarcity regime --- water use efficiency --- rain harvesting --- desalination --- drought --- early warning --- water scarcity --- water supply --- routine monitoring --- hydrologic modeling --- remote sensing --- GIS --- alternative water source --- rainwater harvesting --- arid and semi-arid areas --- hydraulics --- dividing flow manifold --- showerheads --- sprays --- dissolved oxygen --- climate change --- water budget --- general circulation model --- modeling --- stream flow changes --- soil water --- RCP --- Aculeo Lagoon --- Chile --- water demands --- water management --- rainwater harvesting system --- multi-storey residential building --- end-uses --- economic feasibility --- satisfaction survey --- ecological water demand --- reservoir ecological operation --- MIKE 11 model --- PHABSIM model --- watershed management --- water quality --- conventional farming --- organic farming --- nitrate --- residual sodium carbonate --- sodium adsorption ratio --- total dissolved solids --- irrigation practices --- Aztecs --- bronze age --- Byzantine times --- Chinese dynasties --- Egyptians --- Harappans --- Hellenic civilizations --- Incas --- medieval times --- Mayas --- Mesopotamia --- Minoans --- modern times --- Ottoman times --- Romans --- water resources management --- water reuse --- climate variability --- circular economy --- sustainability --- long-term --- regional water supply planning --- alternative water supply --- projects --- expenditures --- investments --- conservation --- intermittent water supply --- pressure monitoring --- unreliable water supply --- pipe breaks --- water distribution system --- water system operation --- water scarcity regime --- water use efficiency --- rain harvesting --- desalination


Book
Land Degradation Assessment with Earth Observation
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue (SI) on “Land Degradation Assessment with Earth Observation” comprises 17 original research papers with a focus on land degradation in arid, semiarid and dry-subhumid areas (i.e., desertification) in addition to temperate rangelands, grasslands, woodlands and the humid tropics. The studies cover different spatial, spectral and temporal scales and employ a wealth of different optical and radar sensors. Some studies incorporate time-series analysis techniques that assess the general trend of vegetation or the timing and duration of the reduction in biological productivity caused by land degradation. As anticipated from the latest trend in Earth Observation (EO) literature, some studies utilize the cloud-computing infrastructure of Google Earth Engine to cope with the unprecedented volume of data involved in current methodological approaches. This SI clearly demonstrates the ever-increasing relevance of EO technologies when it comes to assessing and monitoring land degradation. With the recently published IPCC Reports informing us of the severe impacts and risks to terrestrial and freshwater ecosystems and the ecosystem services they provide, the EO scientific community has a clear obligation to increase its efforts to address any remaining gaps—some of which have been identified in this SI—and produce highly accurate and relevant land-degradation assessment and monitoring tools.

Keywords

Research & information: general --- bfast --- Mann–Kendall --- Sen’s slope --- East Africa --- NDVI --- breakpoint analysis --- vegetation trends --- greening --- browning --- Kenya --- Uganda --- trend analysis --- land use --- land cover --- spatial heterogeneity --- mining development --- geographically weighted regression (GWR) --- Mann-Kendall --- arid and semi-arid areas --- salinization --- irrigated systems --- Niger River basin --- salinity index --- vegetation index --- TI-NDVI --- Sentinel-2 images --- high temporal resolution --- wind erosion modeling --- RWEQ --- GEE --- central Asia --- spatial-temporal variation --- land degradation --- archetypes --- self-organizing maps --- drivers --- savannah --- Nigeria --- reference levels --- REDD+ --- greenhouse gas emissions --- Xishuangbanna --- monitoring and reporting --- Normalised Difference Vegetation Index (NDVI) --- Vegetation Condition Index (VCI) --- drought --- land use-land cover --- remote sensing --- Botswana --- developing countries --- Google Earth Engine --- Landsat time series analysis --- semi-arid areas --- sustainable land management programmes --- precipitation --- breakpoints and timeseries analysis --- ecosystem structural change --- BFAST --- land degradation neutrality --- SDG --- land productivity --- Landsat --- vegetation-precipitation relationship --- soil organic carbon --- Kobresia pygmaea community --- unmanned aerial vehicle --- Gaofen satellite --- spatial distribution --- aridity index --- satellite-based aridity index --- remote sensing index --- salinized land degradation index (SDI) --- Amu Darya delta (ADD) --- satellite imagery --- gully mapping --- machine learning --- random forest --- support vector machines --- South Africa --- semi-arid environment --- shrub encroachment --- slangbos --- Earth observation --- time series --- Sentinel-1 --- Sentinel-2 --- Synthetic Aperture Radar (SAR) --- Soil Adjusted Vegetation Index (SAVI) --- Kyrgyzstan --- pastures --- MODIS --- land surface phenology --- drought impacts --- drought adaptation --- drought index --- vegetation resilience --- drought vulnerability --- standardized precipitation evapotranspiration index --- AVHRR --- n/a --- Sen's slope


Book
Water Supply and Water Scarcity
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Book includes selected papers that has been published in the Water journal Special Issue (SI) on Water Supply and Water Scarcity. Moreover, an overview of the SI is included. The papers selected for publication in the SI include review and research papers on water history, on water management issues under water scarcity regimes, on rainwater harvesting, on water quality and degradation, and on climatic variability impacts on water resources. Overall, the issue identify and highlight the main challenges in water sector, and particularly in management and protection of water resources and in use of alternative (non-conventional) water resources, especially in areas with demographic change and climate vulnerability in order to achieve sustainable and secure water supply. Furthermore, general guidelines and possible solutions for an improved and sophisticated water management system are proposed and discussed, such as the adoption of advanced technological solutions and practices that improve water-use efficiency and the use of alternative water resources, to address the growing environmental and health issues and to reduce the emerging conflicts among water users.

Keywords

drought --- early warning --- water scarcity --- water supply --- routine monitoring --- hydrologic modeling --- remote sensing --- GIS --- alternative water source --- rainwater harvesting --- arid and semi-arid areas --- hydraulics --- dividing flow manifold --- showerheads --- sprays --- dissolved oxygen --- climate change --- water budget --- general circulation model --- modeling --- stream flow changes --- soil water --- RCP --- Aculeo Lagoon --- Chile --- water demands --- water management --- rainwater harvesting system --- multi-storey residential building --- end-uses --- economic feasibility --- satisfaction survey --- ecological water demand --- reservoir ecological operation --- MIKE 11 model --- PHABSIM model --- watershed management --- water quality --- conventional farming --- organic farming --- nitrate --- residual sodium carbonate --- sodium adsorption ratio --- total dissolved solids --- irrigation practices --- Aztecs --- bronze age --- Byzantine times --- Chinese dynasties --- Egyptians --- Harappans --- Hellenic civilizations --- Incas --- medieval times --- Mayas --- Mesopotamia --- Minoans --- modern times --- Ottoman times --- Romans --- n/a --- water resources management --- water reuse --- climate variability --- circular economy --- sustainability --- long-term --- regional water supply planning --- alternative water supply --- projects --- expenditures --- investments --- conservation --- intermittent water supply --- pressure monitoring --- unreliable water supply --- pipe breaks --- water distribution system --- water system operation --- water scarcity regime --- water use efficiency --- rain harvesting --- desalination


Book
Land Degradation Assessment with Earth Observation
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue (SI) on “Land Degradation Assessment with Earth Observation” comprises 17 original research papers with a focus on land degradation in arid, semiarid and dry-subhumid areas (i.e., desertification) in addition to temperate rangelands, grasslands, woodlands and the humid tropics. The studies cover different spatial, spectral and temporal scales and employ a wealth of different optical and radar sensors. Some studies incorporate time-series analysis techniques that assess the general trend of vegetation or the timing and duration of the reduction in biological productivity caused by land degradation. As anticipated from the latest trend in Earth Observation (EO) literature, some studies utilize the cloud-computing infrastructure of Google Earth Engine to cope with the unprecedented volume of data involved in current methodological approaches. This SI clearly demonstrates the ever-increasing relevance of EO technologies when it comes to assessing and monitoring land degradation. With the recently published IPCC Reports informing us of the severe impacts and risks to terrestrial and freshwater ecosystems and the ecosystem services they provide, the EO scientific community has a clear obligation to increase its efforts to address any remaining gaps—some of which have been identified in this SI—and produce highly accurate and relevant land-degradation assessment and monitoring tools.

Keywords

bfast --- Mann–Kendall --- Sen’s slope --- East Africa --- NDVI --- breakpoint analysis --- vegetation trends --- greening --- browning --- Kenya --- Uganda --- trend analysis --- land use --- land cover --- spatial heterogeneity --- mining development --- geographically weighted regression (GWR) --- Mann-Kendall --- arid and semi-arid areas --- salinization --- irrigated systems --- Niger River basin --- salinity index --- vegetation index --- TI-NDVI --- Sentinel-2 images --- high temporal resolution --- wind erosion modeling --- RWEQ --- GEE --- central Asia --- spatial-temporal variation --- land degradation --- archetypes --- self-organizing maps --- drivers --- savannah --- Nigeria --- reference levels --- REDD+ --- greenhouse gas emissions --- Xishuangbanna --- monitoring and reporting --- Normalised Difference Vegetation Index (NDVI) --- Vegetation Condition Index (VCI) --- drought --- land use-land cover --- remote sensing --- Botswana --- developing countries --- Google Earth Engine --- Landsat time series analysis --- semi-arid areas --- sustainable land management programmes --- precipitation --- breakpoints and timeseries analysis --- ecosystem structural change --- BFAST --- land degradation neutrality --- SDG --- land productivity --- Landsat --- vegetation-precipitation relationship --- soil organic carbon --- Kobresia pygmaea community --- unmanned aerial vehicle --- Gaofen satellite --- spatial distribution --- aridity index --- satellite-based aridity index --- remote sensing index --- salinized land degradation index (SDI) --- Amu Darya delta (ADD) --- satellite imagery --- gully mapping --- machine learning --- random forest --- support vector machines --- South Africa --- semi-arid environment --- shrub encroachment --- slangbos --- Earth observation --- time series --- Sentinel-1 --- Sentinel-2 --- Synthetic Aperture Radar (SAR) --- Soil Adjusted Vegetation Index (SAVI) --- Kyrgyzstan --- pastures --- MODIS --- land surface phenology --- drought impacts --- drought adaptation --- drought index --- vegetation resilience --- drought vulnerability --- standardized precipitation evapotranspiration index --- AVHRR --- n/a --- Sen's slope

Listing 1 - 5 of 5
Sort by