Narrow your search

Library

FARO (5)

KU Leuven (5)

LUCA School of Arts (5)

Odisee (5)

Thomas More Kempen (5)

Thomas More Mechelen (5)

UCLL (5)

ULiège (5)

VIVES (5)

Vlaams Parlement (5)

More...

Resource type

book (10)


Language

English (10)


Year
From To Submit

2022 (1)

2021 (5)

2020 (4)

Listing 1 - 10 of 10
Sort by

Book
Municipal Wastewater Management
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Taking the papers’ collection of this Special Issue as a whole, it is clear that “Municipal Wastewater Management” is an ongoing field of research with the ability to incorporate current environmental and human health challenges. The use of municipal sewage to monitor COVID-19 virus circulation in communities and the estimation of possible outbreaks, even before clinical cases have been identified, is a fact that justifies this. In light of the Coronavirus pandemic, the interest of the impact that research on municipal wastewater management can have on improving humans’ health and protecting the environment is being rethought. In respect to this, there is an essential need for scientific publications that present varieties of case studies and discuss best practices, so as wastewater treatment plants to be seen not only as sites of pollutants removal but also as places where energy is efficiently used and environmental sustainability is being practiced, in close relation to the needs of the community. Viewed in this way, the papers’ collected in this Special Issue are looking forward to reach a broad readership that can gain awareness and understanding of their topics and be stimulated into future research and collaborations that would improve all stakeholders engagement in promoting a sustainable municipal wastewater management.


Book
Municipal Wastewater Management
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Taking the papers’ collection of this Special Issue as a whole, it is clear that “Municipal Wastewater Management” is an ongoing field of research with the ability to incorporate current environmental and human health challenges. The use of municipal sewage to monitor COVID-19 virus circulation in communities and the estimation of possible outbreaks, even before clinical cases have been identified, is a fact that justifies this. In light of the Coronavirus pandemic, the interest of the impact that research on municipal wastewater management can have on improving humans’ health and protecting the environment is being rethought. In respect to this, there is an essential need for scientific publications that present varieties of case studies and discuss best practices, so as wastewater treatment plants to be seen not only as sites of pollutants removal but also as places where energy is efficiently used and environmental sustainability is being practiced, in close relation to the needs of the community. Viewed in this way, the papers’ collected in this Special Issue are looking forward to reach a broad readership that can gain awareness and understanding of their topics and be stimulated into future research and collaborations that would improve all stakeholders engagement in promoting a sustainable municipal wastewater management.

Keywords

Research & information: general --- Chemistry --- sewer corrosion --- biocorrosion --- concrete sewers --- ocean dumping --- sewage sludge --- capping method --- London Protocol --- least cost analysis --- integrated fixed-film activated sludge systems --- modified loofah sponge --- bio-carrier --- microbial density --- municipal wastewater --- Greece --- wastewater treatment plant (WWTP) --- history --- policy --- technology trends and applications --- microorganisms --- inactivation --- water matrix --- catalysts --- antibiotic-resistant bacteria --- resistance genes --- heterogeneous catalytic ozonation --- PZC --- p-CBA --- minerals --- thermal treatment --- micropollutants removal --- hybrid constructed wetland --- public acceptance --- wastewater reuse --- wastewater treatment --- waste-water management --- SCADA --- design optimization --- remote control --- IoT --- cloud computing --- disruptive innovation --- lifecycle --- water prices --- water tariffs --- sanitation taxes --- wastewater treatment costs --- energy costs --- household budgets --- screenings --- fats --- biogas potential --- wastewater treatment plant --- energy utilization --- anaerobic digestion --- sewer corrosion --- biocorrosion --- concrete sewers --- ocean dumping --- sewage sludge --- capping method --- London Protocol --- least cost analysis --- integrated fixed-film activated sludge systems --- modified loofah sponge --- bio-carrier --- microbial density --- municipal wastewater --- Greece --- wastewater treatment plant (WWTP) --- history --- policy --- technology trends and applications --- microorganisms --- inactivation --- water matrix --- catalysts --- antibiotic-resistant bacteria --- resistance genes --- heterogeneous catalytic ozonation --- PZC --- p-CBA --- minerals --- thermal treatment --- micropollutants removal --- hybrid constructed wetland --- public acceptance --- wastewater reuse --- wastewater treatment --- waste-water management --- SCADA --- design optimization --- remote control --- IoT --- cloud computing --- disruptive innovation --- lifecycle --- water prices --- water tariffs --- sanitation taxes --- wastewater treatment costs --- energy costs --- household budgets --- screenings --- fats --- biogas potential --- wastewater treatment plant --- energy utilization --- anaerobic digestion


Book
Pharmaceutical Residues in the Environment
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Pharmaceuticals, due to their pseudo-persistence and biological activity as well as their extensive use in human and veterinary medicine, are a class of environmental contaminants that is of emerging concern. In contrast to some conventional pollutants, they are continuously delivered at low levels, which might give rise to toxicity even without high persistence rates. These chemicals are designed to have a specific physiological mode of action and to resist frequently inactivation before exerting their intended therapeutic effect. These features, among others, result in the bioaccumulation of pharmaceuticals which are responsible for toxic effects in aquatic and terrestrial ecosystems. It is extremely important to know how to remove them from the environment and/or how to implement procedures or treatments resulting in their biological inactivation. Although great advances have been made in their detection in aquatic matrices, there remains limited analytical methodologies available for the trace analysis of target and non-target pharmaceuticals in matrices such as soils, sediments, or biota. There are still many gaps in the data on their fate and behavior in the environment as well as on their threats to ecological and human health. This book has included nine current research and three review articles in this field.

Keywords

ifosfamide --- cyclophosphamide --- 5-fluorouracil --- cytostatic drug --- BDD anode --- electrochemical oxidation --- intermediates --- lincomycin --- monensin --- roxarsone --- migration --- residual --- toxicity --- pharmaceuticals --- endocrine disrupting compounds --- hydroponic cultivation --- determining target pollutants in plant materials --- municipal wastewater treatment plants --- ionic liquids --- green chemistry --- environmental and biological samples --- sample preparation --- determination of pharmaceuticals --- chromatographic methods --- electromigration techniques --- sulfamethoxazole --- antibiotic resistance genes --- sul genes --- bacterial community --- constructed wetlands --- environmental contaminants --- pharmaceuticals occurrence --- aquatic compartments --- soil --- poultry farms --- ultra-high performance liquid chromatography --- antibiotics, antibiotic resistance --- antibiotics --- wastewater --- sewage sludge --- risk assessment --- removal efficiency --- LC-MS/MS analysis --- Spirotox --- fluoxetine --- sertraline --- paroxetine --- mianserin --- pharmaceuticals in the environment --- wastewaters --- pharmaceutical residues --- conventional wastewater treatments --- solid phase extraction --- pharmaceuticals toxicity --- environmental risk assessment --- antibiotic resistance genes (ARGs) --- antibiotic-resistant bacteria (ARB) --- wastewater treatment plants (WWTPs) --- activated sludge (AS) --- constructed wetlands (CWs) --- environmental pollution --- spread of resistance --- tetracyclines --- sulfonamides --- fate in the environment --- fate in WWTPs --- ecotoxicity --- antibiotic resistance --- development of methods


Book
Pharmaceutical Residues in the Environment
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Pharmaceuticals, due to their pseudo-persistence and biological activity as well as their extensive use in human and veterinary medicine, are a class of environmental contaminants that is of emerging concern. In contrast to some conventional pollutants, they are continuously delivered at low levels, which might give rise to toxicity even without high persistence rates. These chemicals are designed to have a specific physiological mode of action and to resist frequently inactivation before exerting their intended therapeutic effect. These features, among others, result in the bioaccumulation of pharmaceuticals which are responsible for toxic effects in aquatic and terrestrial ecosystems. It is extremely important to know how to remove them from the environment and/or how to implement procedures or treatments resulting in their biological inactivation. Although great advances have been made in their detection in aquatic matrices, there remains limited analytical methodologies available for the trace analysis of target and non-target pharmaceuticals in matrices such as soils, sediments, or biota. There are still many gaps in the data on their fate and behavior in the environment as well as on their threats to ecological and human health. This book has included nine current research and three review articles in this field.

Keywords

Research & information: general --- Environmental economics --- ifosfamide --- cyclophosphamide --- 5-fluorouracil --- cytostatic drug --- BDD anode --- electrochemical oxidation --- intermediates --- lincomycin --- monensin --- roxarsone --- migration --- residual --- toxicity --- pharmaceuticals --- endocrine disrupting compounds --- hydroponic cultivation --- determining target pollutants in plant materials --- municipal wastewater treatment plants --- ionic liquids --- green chemistry --- environmental and biological samples --- sample preparation --- determination of pharmaceuticals --- chromatographic methods --- electromigration techniques --- sulfamethoxazole --- antibiotic resistance genes --- sul genes --- bacterial community --- constructed wetlands --- environmental contaminants --- pharmaceuticals occurrence --- aquatic compartments --- soil --- poultry farms --- ultra-high performance liquid chromatography --- antibiotics, antibiotic resistance --- antibiotics --- wastewater --- sewage sludge --- risk assessment --- removal efficiency --- LC-MS/MS analysis --- Spirotox --- fluoxetine --- sertraline --- paroxetine --- mianserin --- pharmaceuticals in the environment --- wastewaters --- pharmaceutical residues --- conventional wastewater treatments --- solid phase extraction --- pharmaceuticals toxicity --- environmental risk assessment --- antibiotic resistance genes (ARGs) --- antibiotic-resistant bacteria (ARB) --- wastewater treatment plants (WWTPs) --- activated sludge (AS) --- constructed wetlands (CWs) --- environmental pollution --- spread of resistance --- tetracyclines --- sulfonamides --- fate in the environment --- fate in WWTPs --- ecotoxicity --- antibiotic resistance --- development of methods --- ifosfamide --- cyclophosphamide --- 5-fluorouracil --- cytostatic drug --- BDD anode --- electrochemical oxidation --- intermediates --- lincomycin --- monensin --- roxarsone --- migration --- residual --- toxicity --- pharmaceuticals --- endocrine disrupting compounds --- hydroponic cultivation --- determining target pollutants in plant materials --- municipal wastewater treatment plants --- ionic liquids --- green chemistry --- environmental and biological samples --- sample preparation --- determination of pharmaceuticals --- chromatographic methods --- electromigration techniques --- sulfamethoxazole --- antibiotic resistance genes --- sul genes --- bacterial community --- constructed wetlands --- environmental contaminants --- pharmaceuticals occurrence --- aquatic compartments --- soil --- poultry farms --- ultra-high performance liquid chromatography --- antibiotics, antibiotic resistance --- antibiotics --- wastewater --- sewage sludge --- risk assessment --- removal efficiency --- LC-MS/MS analysis --- Spirotox --- fluoxetine --- sertraline --- paroxetine --- mianserin --- pharmaceuticals in the environment --- wastewaters --- pharmaceutical residues --- conventional wastewater treatments --- solid phase extraction --- pharmaceuticals toxicity --- environmental risk assessment --- antibiotic resistance genes (ARGs) --- antibiotic-resistant bacteria (ARB) --- wastewater treatment plants (WWTPs) --- activated sludge (AS) --- constructed wetlands (CWs) --- environmental pollution --- spread of resistance --- tetracyclines --- sulfonamides --- fate in the environment --- fate in WWTPs --- ecotoxicity --- antibiotic resistance --- development of methods


Book
Plasma Biology
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Irving Langmuir coined the name “plasma” to describe an ionized gas back in 1927. Just over 90 years later, plasma technology is becoming increasingly important in our daily life. For example, in the medical field and dentistry, plasma is used as a method of disinfection and sterilization. Moreover, additional potential novel applications of this technology in different forms of therapy have been proposed. In the agricultural sector, plasma technology could contribute to higher crop yields by enhancing seed germination and the growth of plants, as well as the preservation of foods by disinfection. Plasma technology could also be utilized in environmental applications, including water treatment and remediation, as well as treatment of exhaust gases. Although recent extensive studies have uncovered the broad potential of plasma technology, its mechanisms of action remain unclear. Therefore, further studies aimed at elucidating the molecular mechanisms of plasma technology are required. This book is composed of original articles and reviews investigating the molecular mechanisms of plasma biology. Relevant areas of study include applications in plasma medicine, plasma agriculture, as well as plasma chemistry. Studies on potential therapeutic approaches using plasma itself and plasma-treated solutions are also included.

Keywords

Technology: general issues --- cold jet atmospheric pressure plasma --- reactive oxygen and nitrogen species --- backbone cleavage --- hydroxylation --- carbonyl formation --- cold atmospheric plasma --- autophagy --- silymarin nanoemulsion --- PI3K/mTOR pathway --- wound healing --- oncology --- regenerative medicine --- plasma --- atmospheric pressure plasma jets --- large-scale imaging --- machine learning --- cancer treatment --- cellular imaging --- reactive oxygen species --- mesoporous silica nanoparticles --- biomaterials --- bone regeneration --- cytotoxicity --- proliferation --- osteogenic differentiation --- plasma-activated medium --- TRAIL --- DR5 --- apoptosis --- ROS/RNS --- atmospheric-pressure plasma --- titanium --- amine --- mesenchymal stem cells --- antibiotic resistant bacteria --- antibiotic resistance gene --- disinfection --- E. coli --- inactivation --- sterilization --- cell migration --- endothelial cells VEGF --- gynaecological oncology --- vulva cancer --- risk factors --- plasma tissue interaction --- premalignant lesions --- cancer development --- patient stratification --- individualised profiling --- predictive preventive personalised medicine (PPPM/3PM) --- treatment --- Candida albicans --- cold plasma treatment --- genome --- hydrolytic enzyme activity --- carbon assimilation --- drug susceptibility --- malignant melanoma --- acidification --- nitrite --- acidified nitrite --- nitration --- membrane damage --- CAP --- cancer --- cold atmospheric pressure plasma --- hydrogen peroxide --- hypochlorous acid --- moDCs --- peroxynitrite --- RNS --- ROS --- non-thermal plasma --- biological activity --- breast cancer --- solution plasma process --- aqueous solutions --- chitin --- chitosan --- degradation --- deacetylation --- non-thermal atmospheric pressure plasma --- Pectobacteriaceae --- Dickeya spp. --- Pectobacterium spp. --- antibacterial --- plant protection --- agriculture --- selective cancer treatment --- reaction network --- mathematical modeling --- Mdm2-p53 --- plasma treatment --- molecular dynamic (MD) simulations --- cold jet atmospheric pressure plasma --- reactive oxygen and nitrogen species --- backbone cleavage --- hydroxylation --- carbonyl formation --- cold atmospheric plasma --- autophagy --- silymarin nanoemulsion --- PI3K/mTOR pathway --- wound healing --- oncology --- regenerative medicine --- plasma --- atmospheric pressure plasma jets --- large-scale imaging --- machine learning --- cancer treatment --- cellular imaging --- reactive oxygen species --- mesoporous silica nanoparticles --- biomaterials --- bone regeneration --- cytotoxicity --- proliferation --- osteogenic differentiation --- plasma-activated medium --- TRAIL --- DR5 --- apoptosis --- ROS/RNS --- atmospheric-pressure plasma --- titanium --- amine --- mesenchymal stem cells --- antibiotic resistant bacteria --- antibiotic resistance gene --- disinfection --- E. coli --- inactivation --- sterilization --- cell migration --- endothelial cells VEGF --- gynaecological oncology --- vulva cancer --- risk factors --- plasma tissue interaction --- premalignant lesions --- cancer development --- patient stratification --- individualised profiling --- predictive preventive personalised medicine (PPPM/3PM) --- treatment --- Candida albicans --- cold plasma treatment --- genome --- hydrolytic enzyme activity --- carbon assimilation --- drug susceptibility --- malignant melanoma --- acidification --- nitrite --- acidified nitrite --- nitration --- membrane damage --- CAP --- cancer --- cold atmospheric pressure plasma --- hydrogen peroxide --- hypochlorous acid --- moDCs --- peroxynitrite --- RNS --- ROS --- non-thermal plasma --- biological activity --- breast cancer --- solution plasma process --- aqueous solutions --- chitin --- chitosan --- degradation --- deacetylation --- non-thermal atmospheric pressure plasma --- Pectobacteriaceae --- Dickeya spp. --- Pectobacterium spp. --- antibacterial --- plant protection --- agriculture --- selective cancer treatment --- reaction network --- mathematical modeling --- Mdm2-p53 --- plasma treatment --- molecular dynamic (MD) simulations


Book
Bacteriophages : Alternatives to Antibiotics and Beyond
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

There is talk of an upcoming antibiotic armageddon, with untreatable post-operative infections, and similarly untreatable complications after chemotherapy. Indeed, the now famous “O’Neill Report” (https://amr-review.org/) suggests that, by 2050, more people might die from antibiotic-resistant bacterial infections than from cancer. While we are still learning all the subtle drivers of antibiotic resistance, it seems increasingly clear that we need to take a “one health” approach, curtailing the use of antibiotics in both human and veterinary medicine. However, there are no new classes of antibiotics on our horizon. Maybe something that has been around “forever” can come to our rescue—bacteriophages! Nevertheless, it is also necessary to do things differently, and use these new antimicrobials appropriately. Therefore, an in-depth study of bacteriophage biology and case-by-case applications might be required. Whilst by no means comprehensive, this book does cover some of the many topics related to bacteriophages as antimicrobials, including their use in human therapy and aquaculture. It also explores the potential use of phage endolysins as substitutes of antibiotics in two sectors where there is an urgent need—human therapy and the agro-food industry. Last but not least, there is an excellent perspective article on phage therapy implementation.

Keywords

Medicine --- bacteriophages --- dairy industry --- pathogens --- lactic acid bacteria --- fermentation failure --- biofilms --- antimicrobial resistance --- antimicrobials --- lysins --- horizontal gene transfer, transduction --- biofilm --- phage therapy --- resistance --- bacteriophage --- models --- agent based --- mass action --- bacterial phage resistance --- regression modeling --- MRSA --- Clostridium difficile --- Clostridium difficile infection --- microbiome --- in vitro fermentation model --- marine vibrios --- biological control --- aquaculture --- interactions --- vibriosis --- Aeromonas hydrophila --- Motile Aeromonas Septicemia --- MAS --- multiple-antibiotic-resistance --- striped catfish (Pangasianodon hypophthalmus) --- endolysin --- antibiotics --- one health --- protein engineering --- Aeromonas salmonicida --- furunculosis --- phage-resistant mutants --- proteins --- infrared spectroscopy --- lysin --- lytic enzyme --- peptidoglycan hydrolase --- antimicrobial --- antibacterial --- antibiotic resistance --- bacteriophage therapy --- Nagoya Protocol --- CRISPR CAS --- phage isolation --- phage resistance --- Staphylococcus --- Kayvirus --- Vibrio anguillarum --- fish larvae --- challenge trials --- phage display --- enzybiotics --- Bacteriophages --- diabetic foot ulcer --- osteomyelitis --- Staphylococcus aureus --- Antibiotic-resistant bacteria --- lysogenic conversion --- prophage induction --- read recruitment --- shiga toxin --- American Foulbrood --- phage --- Paenibacillus larvae --- Brevibacillus laterosporus --- treatment --- safety --- bystander phage therapy --- Mycobacterium smegmatis --- mycobacteriophages --- directed evolution --- PlyC CHAP --- protein net charge --- CBD-independent --- FoldX --- STEC-specific bacteriophage --- whole genome sequencing --- STEC O145 strains --- antimicrobial agent --- Pseudomonas aeruginosa --- dual-species --- antibiotic --- synergy --- simultaneous --- sequential --- microbiome therapy --- evolution --- bacteriophages --- dairy industry --- pathogens --- lactic acid bacteria --- fermentation failure --- biofilms --- antimicrobial resistance --- antimicrobials --- lysins --- horizontal gene transfer, transduction --- biofilm --- phage therapy --- resistance --- bacteriophage --- models --- agent based --- mass action --- bacterial phage resistance --- regression modeling --- MRSA --- Clostridium difficile --- Clostridium difficile infection --- microbiome --- in vitro fermentation model --- marine vibrios --- biological control --- aquaculture --- interactions --- vibriosis --- Aeromonas hydrophila --- Motile Aeromonas Septicemia --- MAS --- multiple-antibiotic-resistance --- striped catfish (Pangasianodon hypophthalmus) --- endolysin --- antibiotics --- one health --- protein engineering --- Aeromonas salmonicida --- furunculosis --- phage-resistant mutants --- proteins --- infrared spectroscopy --- lysin --- lytic enzyme --- peptidoglycan hydrolase --- antimicrobial --- antibacterial --- antibiotic resistance --- bacteriophage therapy --- Nagoya Protocol --- CRISPR CAS --- phage isolation --- phage resistance --- Staphylococcus --- Kayvirus --- Vibrio anguillarum --- fish larvae --- challenge trials --- phage display --- enzybiotics --- Bacteriophages --- diabetic foot ulcer --- osteomyelitis --- Staphylococcus aureus --- Antibiotic-resistant bacteria --- lysogenic conversion --- prophage induction --- read recruitment --- shiga toxin --- American Foulbrood --- phage --- Paenibacillus larvae --- Brevibacillus laterosporus --- treatment --- safety --- bystander phage therapy --- Mycobacterium smegmatis --- mycobacteriophages --- directed evolution --- PlyC CHAP --- protein net charge --- CBD-independent --- FoldX --- STEC-specific bacteriophage --- whole genome sequencing --- STEC O145 strains --- antimicrobial agent --- Pseudomonas aeruginosa --- dual-species --- antibiotic --- synergy --- simultaneous --- sequential --- microbiome therapy --- evolution


Book
Targeting the Microbiome for Disease Diagnosis and Therapy : New Frontiers for Personalized Medicine
Author:
ISBN: 3036556117 3036556125 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Background: The gut microbiota is emerging as a pivotal player in the pathogenesis of many non-communicable diseases. Thus, it has been proposed as a new diagnostic and therapeutic target.Aim and scope: This Special Issue will focus on the microbiome as a potential target of new personalized therapies or diagnostic tools.History: In recent decades, the gut microbiome has been deeply investigated, and many studies have provided new information on the role of dysbiosis in many gastrointestinal and extra-gastrointestinal diseases. Recently, in addition to its phylogenetic characterization, new information has become available regarding the function of the gut microbiota, thanks to proteomic and metabolomic analyses.Cutting-edge research: The therapeutic modulation of the gut microbiota based on different strategies, including diet modification, antibiotics, prebiotics, probiotics, and, last but not least, fecal microbiota transplantation, has been tested for the treatment of various diseases. Recently, the possible applications and modalities of gut microbiota modulation have been increasingly expanding.We have collected original clinical or pre-clinical research papers and reviews focusing on the use of the microbiome for disease diagnosis, monitoring, or therapy and suggesting new possible gut microbiota-based approaches for personalized care.

Keywords

Medicine --- Graves–Basedow’s diseases --- Hashimoto’s thyroiditis --- autoimmunity --- gut microbiota --- irritable bowel syndrome --- microbiota --- microbiome --- food components --- nutrients --- hematopoietic stem cell transplantation --- fecal microbiota transplantation --- aGvHD --- antibiotic-resistant bacteria --- cystic fibrosis --- rabbits --- intestinal dysbiosis --- feces microbiome --- beta-blocker --- hemodialysis --- next-generation sequencing --- propensity score matching methods --- violin plots --- random sampling --- analytical reproducibility --- fecal matter transplantation --- data disease subtypes --- personalized medicine --- maltodextrin --- dip test --- gallstone disease --- 16S rDNA gene diversity --- blood biochemical characteristics --- mesothelioma --- 16S RNA sequencing --- species --- probiotics and gut disease --- probiotics and acute diverticulitis --- probiotics and diverticular disease --- probiotics mechanism of action --- IgA Nephropathy --- rifaximin --- α1KI-CD89Tg mice --- children --- intermittent hypoxemia --- obstructive sleep apnea --- tonsil --- weight status --- oral microbiota --- rheumatology diseases --- biomarkers --- artificial intelligence --- machine learning --- rheumatoid arthritis --- Sjogren’s syndrome --- systemic lupus erythematosus --- endometrial cancer --- endometrial microbiome --- gut microbiome --- dysbiosis --- estrogen metabolism --- estrobolome --- inflammation --- antitumour treatment --- prebiotics --- probiotics --- schizophrenia --- depression --- anxiety --- functional genes --- thymoma --- genera --- driver mutation --- cardiovascular diseases --- critically ill --- intestinal permeability --- recurrent cystitis --- n/a --- Graves-Basedow's diseases --- Hashimoto's thyroiditis --- Sjogren's syndrome


Book
Plasma Biology
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Irving Langmuir coined the name “plasma” to describe an ionized gas back in 1927. Just over 90 years later, plasma technology is becoming increasingly important in our daily life. For example, in the medical field and dentistry, plasma is used as a method of disinfection and sterilization. Moreover, additional potential novel applications of this technology in different forms of therapy have been proposed. In the agricultural sector, plasma technology could contribute to higher crop yields by enhancing seed germination and the growth of plants, as well as the preservation of foods by disinfection. Plasma technology could also be utilized in environmental applications, including water treatment and remediation, as well as treatment of exhaust gases. Although recent extensive studies have uncovered the broad potential of plasma technology, its mechanisms of action remain unclear. Therefore, further studies aimed at elucidating the molecular mechanisms of plasma technology are required. This book is composed of original articles and reviews investigating the molecular mechanisms of plasma biology. Relevant areas of study include applications in plasma medicine, plasma agriculture, as well as plasma chemistry. Studies on potential therapeutic approaches using plasma itself and plasma-treated solutions are also included.

Keywords

Technology: general issues --- cold jet atmospheric pressure plasma --- reactive oxygen and nitrogen species --- backbone cleavage --- hydroxylation --- carbonyl formation --- cold atmospheric plasma --- autophagy --- silymarin nanoemulsion --- PI3K/mTOR pathway --- wound healing --- oncology --- regenerative medicine --- plasma --- atmospheric pressure plasma jets --- large-scale imaging --- machine learning --- cancer treatment --- cellular imaging --- reactive oxygen species --- mesoporous silica nanoparticles --- biomaterials --- bone regeneration --- cytotoxicity --- proliferation --- osteogenic differentiation --- plasma-activated medium --- TRAIL --- DR5 --- apoptosis --- ROS/RNS --- atmospheric-pressure plasma --- titanium --- amine --- mesenchymal stem cells --- antibiotic resistant bacteria --- antibiotic resistance gene --- disinfection --- E. coli --- inactivation --- sterilization --- cell migration --- endothelial cells VEGF --- gynaecological oncology --- vulva cancer --- risk factors --- plasma tissue interaction --- premalignant lesions --- cancer development --- patient stratification --- individualised profiling --- predictive preventive personalised medicine (PPPM/3PM) --- treatment --- Candida albicans --- cold plasma treatment --- genome --- hydrolytic enzyme activity --- carbon assimilation --- drug susceptibility --- malignant melanoma --- acidification --- nitrite --- acidified nitrite --- nitration --- membrane damage --- CAP --- cancer --- cold atmospheric pressure plasma --- hydrogen peroxide --- hypochlorous acid --- moDCs --- peroxynitrite --- RNS --- ROS --- non-thermal plasma --- biological activity --- breast cancer --- solution plasma process --- aqueous solutions --- chitin --- chitosan --- degradation --- deacetylation --- non-thermal atmospheric pressure plasma --- Pectobacteriaceae --- Dickeya spp. --- Pectobacterium spp. --- antibacterial --- plant protection --- agriculture --- selective cancer treatment --- reaction network --- mathematical modeling --- n/a --- Mdm2–p53 --- plasma treatment --- molecular dynamic (MD) simulations --- Mdm2-p53


Book
Plasma Biology
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Irving Langmuir coined the name “plasma” to describe an ionized gas back in 1927. Just over 90 years later, plasma technology is becoming increasingly important in our daily life. For example, in the medical field and dentistry, plasma is used as a method of disinfection and sterilization. Moreover, additional potential novel applications of this technology in different forms of therapy have been proposed. In the agricultural sector, plasma technology could contribute to higher crop yields by enhancing seed germination and the growth of plants, as well as the preservation of foods by disinfection. Plasma technology could also be utilized in environmental applications, including water treatment and remediation, as well as treatment of exhaust gases. Although recent extensive studies have uncovered the broad potential of plasma technology, its mechanisms of action remain unclear. Therefore, further studies aimed at elucidating the molecular mechanisms of plasma technology are required. This book is composed of original articles and reviews investigating the molecular mechanisms of plasma biology. Relevant areas of study include applications in plasma medicine, plasma agriculture, as well as plasma chemistry. Studies on potential therapeutic approaches using plasma itself and plasma-treated solutions are also included.

Keywords

cold jet atmospheric pressure plasma --- reactive oxygen and nitrogen species --- backbone cleavage --- hydroxylation --- carbonyl formation --- cold atmospheric plasma --- autophagy --- silymarin nanoemulsion --- PI3K/mTOR pathway --- wound healing --- oncology --- regenerative medicine --- plasma --- atmospheric pressure plasma jets --- large-scale imaging --- machine learning --- cancer treatment --- cellular imaging --- reactive oxygen species --- mesoporous silica nanoparticles --- biomaterials --- bone regeneration --- cytotoxicity --- proliferation --- osteogenic differentiation --- plasma-activated medium --- TRAIL --- DR5 --- apoptosis --- ROS/RNS --- atmospheric-pressure plasma --- titanium --- amine --- mesenchymal stem cells --- antibiotic resistant bacteria --- antibiotic resistance gene --- disinfection --- E. coli --- inactivation --- sterilization --- cell migration --- endothelial cells VEGF --- gynaecological oncology --- vulva cancer --- risk factors --- plasma tissue interaction --- premalignant lesions --- cancer development --- patient stratification --- individualised profiling --- predictive preventive personalised medicine (PPPM/3PM) --- treatment --- Candida albicans --- cold plasma treatment --- genome --- hydrolytic enzyme activity --- carbon assimilation --- drug susceptibility --- malignant melanoma --- acidification --- nitrite --- acidified nitrite --- nitration --- membrane damage --- CAP --- cancer --- cold atmospheric pressure plasma --- hydrogen peroxide --- hypochlorous acid --- moDCs --- peroxynitrite --- RNS --- ROS --- non-thermal plasma --- biological activity --- breast cancer --- solution plasma process --- aqueous solutions --- chitin --- chitosan --- degradation --- deacetylation --- non-thermal atmospheric pressure plasma --- Pectobacteriaceae --- Dickeya spp. --- Pectobacterium spp. --- antibacterial --- plant protection --- agriculture --- selective cancer treatment --- reaction network --- mathematical modeling --- n/a --- Mdm2–p53 --- plasma treatment --- molecular dynamic (MD) simulations --- Mdm2-p53


Book
Bacteriophages : Alternatives to Antibiotics and Beyond
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

There is talk of an upcoming antibiotic armageddon, with untreatable post-operative infections, and similarly untreatable complications after chemotherapy. Indeed, the now famous “O’Neill Report” (https://amr-review.org/) suggests that, by 2050, more people might die from antibiotic-resistant bacterial infections than from cancer. While we are still learning all the subtle drivers of antibiotic resistance, it seems increasingly clear that we need to take a “one health” approach, curtailing the use of antibiotics in both human and veterinary medicine. However, there are no new classes of antibiotics on our horizon. Maybe something that has been around “forever” can come to our rescue—bacteriophages! Nevertheless, it is also necessary to do things differently, and use these new antimicrobials appropriately. Therefore, an in-depth study of bacteriophage biology and case-by-case applications might be required. Whilst by no means comprehensive, this book does cover some of the many topics related to bacteriophages as antimicrobials, including their use in human therapy and aquaculture. It also explores the potential use of phage endolysins as substitutes of antibiotics in two sectors where there is an urgent need—human therapy and the agro-food industry. Last but not least, there is an excellent perspective article on phage therapy implementation.

Keywords

bacteriophages --- dairy industry --- pathogens --- lactic acid bacteria --- fermentation failure --- biofilms --- antimicrobial resistance --- antimicrobials --- lysins --- horizontal gene transfer, transduction --- biofilm --- phage therapy --- resistance --- bacteriophage --- models --- agent based --- mass action --- bacterial phage resistance --- regression modeling --- MRSA --- Clostridium difficile --- Clostridium difficile infection --- microbiome --- in vitro fermentation model --- marine vibrios --- biological control --- aquaculture --- interactions --- vibriosis --- Aeromonas hydrophila --- Motile Aeromonas Septicemia --- MAS --- multiple-antibiotic-resistance --- striped catfish (Pangasianodon hypophthalmus) --- endolysin --- antibiotics --- one health --- protein engineering --- Aeromonas salmonicida --- furunculosis --- phage-resistant mutants --- proteins --- infrared spectroscopy --- lysin --- lytic enzyme --- peptidoglycan hydrolase --- antimicrobial --- antibacterial --- antibiotic resistance --- bacteriophage therapy --- Nagoya Protocol --- CRISPR CAS --- phage isolation --- phage resistance --- Staphylococcus --- Kayvirus --- Vibrio anguillarum --- fish larvae --- challenge trials --- phage display --- enzybiotics --- Bacteriophages --- diabetic foot ulcer --- osteomyelitis --- Staphylococcus aureus --- Antibiotic-resistant bacteria --- lysogenic conversion --- prophage induction --- read recruitment --- shiga toxin --- American Foulbrood --- phage --- Paenibacillus larvae --- Brevibacillus laterosporus --- treatment --- safety --- bystander phage therapy --- Mycobacterium smegmatis --- mycobacteriophages --- directed evolution --- PlyC CHAP --- protein net charge --- CBD-independent --- FoldX --- STEC-specific bacteriophage --- whole genome sequencing --- STEC O145 strains --- antimicrobial agent --- Pseudomonas aeruginosa --- dual-species --- antibiotic --- synergy --- simultaneous --- sequential --- microbiome therapy --- evolution

Listing 1 - 10 of 10
Sort by