Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2020 (3)

2016 (3)

Listing 1 - 6 of 6
Sort by

Book
Immunogenic Cell Death in Cancer: From Benchside Research to Bedside
Authors: ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Classically, anti-cancer therapies have always been applied with the primary aim of tumor debulking achieved through widespread induction of cancer cell death. While the role of host immune system is frequently considered as host protective in various (antigen-bearing) pathologies or infections yet in case of cancer overtime it was proposed that the host immune system either plays no role in therapeutic efficacy or plays a limited role that is therapeutically unemployable. The concept that the immune system is dispensable for the efficacy of anticancer therapies lingered on for a substantial amount of time; not only because evidence supporting the claim that anti-cancer immunity played a role were mainly contradictory, but also largely because it was considered acceptable (and sometimes still is) to test anticancer therapies in immunodeficient mice (i.e. SCID/athymic mice lacking adaptive immune system). This latter practice played a detrimental role in appreciating the role of anticancer immunity in cancer therapy. This scenario is epitomized by the fact that for a long time the very existence of cancer-associated antigens or cancer-associated ‘danger signaling’ remained controversial. However, over last several years this dogmatic view has been considerably modified. The existence of cancer-associated antigens and ‘danger signaling’ has been proven to be incontrovertible. These developments have together paved way for the establishment of the attractive concept of “immunogenic cell death” (ICD). It has been established that a restricted class of chemotherapeutics/targeted therapeutics, radiotherapy, photodynamic therapy and certain oncolytic viruses can induce a form of cancer cell death called ICD which is accompanied by spatiotemporally defined emission of danger signals. These danger signals along with other factors help cancer cells undergoing ICD to activate host innate immune cells, which in turn activate T cell-based immunity that helps eradicate live (or residual) surviving cancer cells. The emergence of ICD has been marred by some controversy. ICD has been criticized to be either experimental model or setting-specific or mostly a concept based on rodent studies that may have very limited implications for clinical application. However, in recent times it has emerged (through mainly retrospective or prognostic studies) that ICD can work in various human clinical settings hinting towards clinical applicability of ICD. However a widespread consensus on this issue is still transitional. In the current Research Topic we aimed to organize and intensify a discussion that strives to bring together the academic and clinical research community in order to provide a background to the current state-of-the-art in ICD associated bench-side research and to initiate fruitful discussions on present and future prospects of ICD translating towards the clinical, bedside reality.


Book
Immunogenic Cell Death in Cancer: From Benchside Research to Bedside
Authors: ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Classically, anti-cancer therapies have always been applied with the primary aim of tumor debulking achieved through widespread induction of cancer cell death. While the role of host immune system is frequently considered as host protective in various (antigen-bearing) pathologies or infections yet in case of cancer overtime it was proposed that the host immune system either plays no role in therapeutic efficacy or plays a limited role that is therapeutically unemployable. The concept that the immune system is dispensable for the efficacy of anticancer therapies lingered on for a substantial amount of time; not only because evidence supporting the claim that anti-cancer immunity played a role were mainly contradictory, but also largely because it was considered acceptable (and sometimes still is) to test anticancer therapies in immunodeficient mice (i.e. SCID/athymic mice lacking adaptive immune system). This latter practice played a detrimental role in appreciating the role of anticancer immunity in cancer therapy. This scenario is epitomized by the fact that for a long time the very existence of cancer-associated antigens or cancer-associated ‘danger signaling’ remained controversial. However, over last several years this dogmatic view has been considerably modified. The existence of cancer-associated antigens and ‘danger signaling’ has been proven to be incontrovertible. These developments have together paved way for the establishment of the attractive concept of “immunogenic cell death” (ICD). It has been established that a restricted class of chemotherapeutics/targeted therapeutics, radiotherapy, photodynamic therapy and certain oncolytic viruses can induce a form of cancer cell death called ICD which is accompanied by spatiotemporally defined emission of danger signals. These danger signals along with other factors help cancer cells undergoing ICD to activate host innate immune cells, which in turn activate T cell-based immunity that helps eradicate live (or residual) surviving cancer cells. The emergence of ICD has been marred by some controversy. ICD has been criticized to be either experimental model or setting-specific or mostly a concept based on rodent studies that may have very limited implications for clinical application. However, in recent times it has emerged (through mainly retrospective or prognostic studies) that ICD can work in various human clinical settings hinting towards clinical applicability of ICD. However a widespread consensus on this issue is still transitional. In the current Research Topic we aimed to organize and intensify a discussion that strives to bring together the academic and clinical research community in order to provide a background to the current state-of-the-art in ICD associated bench-side research and to initiate fruitful discussions on present and future prospects of ICD translating towards the clinical, bedside reality.


Book
Immunogenic Cell Death in Cancer: From Benchside Research to Bedside
Authors: ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Classically, anti-cancer therapies have always been applied with the primary aim of tumor debulking achieved through widespread induction of cancer cell death. While the role of host immune system is frequently considered as host protective in various (antigen-bearing) pathologies or infections yet in case of cancer overtime it was proposed that the host immune system either plays no role in therapeutic efficacy or plays a limited role that is therapeutically unemployable. The concept that the immune system is dispensable for the efficacy of anticancer therapies lingered on for a substantial amount of time; not only because evidence supporting the claim that anti-cancer immunity played a role were mainly contradictory, but also largely because it was considered acceptable (and sometimes still is) to test anticancer therapies in immunodeficient mice (i.e. SCID/athymic mice lacking adaptive immune system). This latter practice played a detrimental role in appreciating the role of anticancer immunity in cancer therapy. This scenario is epitomized by the fact that for a long time the very existence of cancer-associated antigens or cancer-associated ‘danger signaling’ remained controversial. However, over last several years this dogmatic view has been considerably modified. The existence of cancer-associated antigens and ‘danger signaling’ has been proven to be incontrovertible. These developments have together paved way for the establishment of the attractive concept of “immunogenic cell death” (ICD). It has been established that a restricted class of chemotherapeutics/targeted therapeutics, radiotherapy, photodynamic therapy and certain oncolytic viruses can induce a form of cancer cell death called ICD which is accompanied by spatiotemporally defined emission of danger signals. These danger signals along with other factors help cancer cells undergoing ICD to activate host innate immune cells, which in turn activate T cell-based immunity that helps eradicate live (or residual) surviving cancer cells. The emergence of ICD has been marred by some controversy. ICD has been criticized to be either experimental model or setting-specific or mostly a concept based on rodent studies that may have very limited implications for clinical application. However, in recent times it has emerged (through mainly retrospective or prognostic studies) that ICD can work in various human clinical settings hinting towards clinical applicability of ICD. However a widespread consensus on this issue is still transitional. In the current Research Topic we aimed to organize and intensify a discussion that strives to bring together the academic and clinical research community in order to provide a background to the current state-of-the-art in ICD associated bench-side research and to initiate fruitful discussions on present and future prospects of ICD translating towards the clinical, bedside reality.


Book
Cancer Nanomedicine
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This special issue brings together cutting edge research and insightful commentary on the currentl state of the Cancer Nanomedicine field.

Keywords

Technology: general issues --- antibody drug conjugate (ADC) --- PD-L1 --- tumor spheroid disruption --- immune modulation --- doxorubicin --- graphene oxide --- adsorption --- cathepsin D --- cathepsin L --- anti-metastatic enzyme cancer therapy --- nanoparticles --- targeted delivery system --- siRNA --- osteopontin --- mammary carcinoma --- mesenchymal stem cells (MSCs) --- TAT peptide --- PLGA --- paclitaxel --- nano-engineered MSCs --- orthotopic lung tumor model --- intracranial glioma --- immunotherapy --- CPMV --- viral nanoparticles --- in situ vaccine --- albumin nanoparticles --- microbubble --- ultrasound --- theranostics --- hepatocellular carcinoma --- VX2 tumor --- intra-arterial chemotherapy --- lung cancer --- nanomedicine --- clinical status --- cancer therapy --- breast cancer --- cell signaling --- active targeting --- passive targeting --- EPR effect --- oncogenes --- nanoparticle --- drug delivery --- ligand --- tumor targeting --- biodistribution --- Mesoporous silica nanoparticle --- drug delivery system --- target treatment --- lanthanide metal --- hyaluronic acid --- hyaluronidase --- drug combination --- everolimus --- dual-targeting --- magnetic nanoparticles --- monoclonal antibodies --- nanostructured lipid carrier --- platelet membrane --- biomimicry --- plasmonic photothermal therapy --- gold nanorods --- surgery --- bleeding --- dogs --- cats --- stimuli-responsive --- DOX --- SN38 --- CSCs --- single-walled carbon nanotubes --- chirality separation --- NASH --- drug-gene delivery --- near IR hyperspectral imaging --- plasmonics --- copper --- VEGF --- glioblastoma --- differentiated neuroblastoma --- peptidomimetics --- real-time quantitative polymerase chain reaction (qPCR) --- actin --- combinatorial therapy --- anticancer and antibacterial activity --- temoporfin --- drug-in-cyclodextrin-in-liposome --- hybrid nanoparticles --- multicellular tumor spheroids --- cyclodextrins --- photodynamic therapy article --- yet reasonably common within the subject discipline --- antitumor strategy --- biomimetic core–shell nanoparticles --- NK cell-derived exosomes --- folate receptor --- albumin nanoparticle --- microfluidic --- cabazitaxel --- polydopamine nanoparticles --- size --- cytotoxicity --- iron affinity --- FA-DABA-SMA --- self-assembly --- oncogenic proteins --- intracellular disruption --- folic receptor alpha --- pancreatic cancer --- parvifloron D --- albumin --- erlotinib --- photodynamic therapy --- lipid nanoparticles --- tumor vectorization --- verteporfin --- ovarian carcinomatosis --- spheroids --- integrin --- RGD peptide --- cancer diagnosis --- radiotherapy --- hyperthermia therapy --- biomimetic --- nanocarrier --- membrane-wrapped --- cancer --- targeted delivery --- photothermal therapy --- imaging --- cancer nanomedicine --- tumor microenvironment --- nano–bio interactions --- clinical translation --- magnetic nanowires --- magnetic hyperthermia --- magnetic actuation --- magnetic drug targeting --- titanate nanotubes --- gold nanoparticles --- vectorization --- colloidal stability --- docetaxel --- prostate cancer --- mangiferin --- anti-topoisomerase activity --- extracellular vesicles --- exosomes --- chemico-physical functionalization --- loading --- translational medicine --- nanotechnology: bioengineering --- anacardic acid --- mitoxantrone --- targeted drug delivery --- liposomes --- melanoma --- apoptosis --- ascorbic acid --- angiogenesis --- epithelial-to-mesenchymal transition --- hypoxia --- immunosuppression --- metabolism --- nanotherapeutics --- tumour microenvironment --- DNA origami --- liposome --- remote loading --- acute toxicity --- organoids --- magnetic silica-coated iron oxide nanochains --- photothermal treatment --- hyperthermia --- collagen --- cellular microenvironment --- lymphadenectomy --- magnetometer --- sentinel lymph node dissection --- SPION --- superparamagnetic iron oxide nanoparticles --- Vδ2 T cells --- zoledronic acid --- polymeric nanoconstruct --- anti-tumor immunity --- colorectal carcinoma --- β-cyclodextrin nanosponges --- BALB-neuT mice --- brain tumours --- glioma --- blood brain barrier --- polymeric nanoparticles --- PEGylation --- dioleoylphosphatidylethanolamine --- poly(hydroxyethyl acrylate-co-allyl methyl sulfide) copolymer --- folate --- oxidation-sensitive release --- cellular interaction --- in vitro anti-cancer activity --- triple negative breast cancer --- organotin --- mesoporous silica nanoparticles --- MDA-MB-231 --- theranostic nanomaterials --- nanobiotechnology --- molecular imaging --- nanosystems --- nanomicelles --- ovarian cancer --- tumour targeting --- chemotherapeutics --- riboflavin --- vitamin B2 --- nanomedicines --- secondary structure --- mixed micelle --- pH responsive --- targeted therapy --- anti-cancer --- shear stress --- flow --- in vitro --- therapeutics --- diagnostics --- Immunotherapy


Book
Cancer Nanomedicine
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This special issue brings together cutting edge research and insightful commentary on the currentl state of the Cancer Nanomedicine field.

Keywords

antibody drug conjugate (ADC) --- PD-L1 --- tumor spheroid disruption --- immune modulation --- doxorubicin --- graphene oxide --- adsorption --- cathepsin D --- cathepsin L --- anti-metastatic enzyme cancer therapy --- nanoparticles --- targeted delivery system --- siRNA --- osteopontin --- mammary carcinoma --- mesenchymal stem cells (MSCs) --- TAT peptide --- PLGA --- paclitaxel --- nano-engineered MSCs --- orthotopic lung tumor model --- intracranial glioma --- immunotherapy --- CPMV --- viral nanoparticles --- in situ vaccine --- albumin nanoparticles --- microbubble --- ultrasound --- theranostics --- hepatocellular carcinoma --- VX2 tumor --- intra-arterial chemotherapy --- lung cancer --- nanomedicine --- clinical status --- cancer therapy --- breast cancer --- cell signaling --- active targeting --- passive targeting --- EPR effect --- oncogenes --- nanoparticle --- drug delivery --- ligand --- tumor targeting --- biodistribution --- Mesoporous silica nanoparticle --- drug delivery system --- target treatment --- lanthanide metal --- hyaluronic acid --- hyaluronidase --- drug combination --- everolimus --- dual-targeting --- magnetic nanoparticles --- monoclonal antibodies --- nanostructured lipid carrier --- platelet membrane --- biomimicry --- plasmonic photothermal therapy --- gold nanorods --- surgery --- bleeding --- dogs --- cats --- stimuli-responsive --- DOX --- SN38 --- CSCs --- single-walled carbon nanotubes --- chirality separation --- NASH --- drug-gene delivery --- near IR hyperspectral imaging --- plasmonics --- copper --- VEGF --- glioblastoma --- differentiated neuroblastoma --- peptidomimetics --- real-time quantitative polymerase chain reaction (qPCR) --- actin --- combinatorial therapy --- anticancer and antibacterial activity --- temoporfin --- drug-in-cyclodextrin-in-liposome --- hybrid nanoparticles --- multicellular tumor spheroids --- cyclodextrins --- photodynamic therapy article --- yet reasonably common within the subject discipline --- antitumor strategy --- biomimetic core–shell nanoparticles --- NK cell-derived exosomes --- folate receptor --- albumin nanoparticle --- microfluidic --- cabazitaxel --- polydopamine nanoparticles --- size --- cytotoxicity --- iron affinity --- FA-DABA-SMA --- self-assembly --- oncogenic proteins --- intracellular disruption --- folic receptor alpha --- pancreatic cancer --- parvifloron D --- albumin --- erlotinib --- photodynamic therapy --- lipid nanoparticles --- tumor vectorization --- verteporfin --- ovarian carcinomatosis --- spheroids --- integrin --- RGD peptide --- cancer diagnosis --- radiotherapy --- hyperthermia therapy --- biomimetic --- nanocarrier --- membrane-wrapped --- cancer --- targeted delivery --- photothermal therapy --- imaging --- cancer nanomedicine --- tumor microenvironment --- nano–bio interactions --- clinical translation --- magnetic nanowires --- magnetic hyperthermia --- magnetic actuation --- magnetic drug targeting --- titanate nanotubes --- gold nanoparticles --- vectorization --- colloidal stability --- docetaxel --- prostate cancer --- mangiferin --- anti-topoisomerase activity --- extracellular vesicles --- exosomes --- chemico-physical functionalization --- loading --- translational medicine --- nanotechnology: bioengineering --- anacardic acid --- mitoxantrone --- targeted drug delivery --- liposomes --- melanoma --- apoptosis --- ascorbic acid --- angiogenesis --- epithelial-to-mesenchymal transition --- hypoxia --- immunosuppression --- metabolism --- nanotherapeutics --- tumour microenvironment --- DNA origami --- liposome --- remote loading --- acute toxicity --- organoids --- magnetic silica-coated iron oxide nanochains --- photothermal treatment --- hyperthermia --- collagen --- cellular microenvironment --- lymphadenectomy --- magnetometer --- sentinel lymph node dissection --- SPION --- superparamagnetic iron oxide nanoparticles --- Vδ2 T cells --- zoledronic acid --- polymeric nanoconstruct --- anti-tumor immunity --- colorectal carcinoma --- β-cyclodextrin nanosponges --- BALB-neuT mice --- brain tumours --- glioma --- blood brain barrier --- polymeric nanoparticles --- PEGylation --- dioleoylphosphatidylethanolamine --- poly(hydroxyethyl acrylate-co-allyl methyl sulfide) copolymer --- folate --- oxidation-sensitive release --- cellular interaction --- in vitro anti-cancer activity --- triple negative breast cancer --- organotin --- mesoporous silica nanoparticles --- MDA-MB-231 --- theranostic nanomaterials --- nanobiotechnology --- molecular imaging --- nanosystems --- nanomicelles --- ovarian cancer --- tumour targeting --- chemotherapeutics --- riboflavin --- vitamin B2 --- nanomedicines --- secondary structure --- mixed micelle --- pH responsive --- targeted therapy --- anti-cancer --- shear stress --- flow --- in vitro --- therapeutics --- diagnostics --- Immunotherapy


Book
Cancer Nanomedicine
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This special issue brings together cutting edge research and insightful commentary on the currentl state of the Cancer Nanomedicine field.

Keywords

Technology: general issues --- antibody drug conjugate (ADC) --- PD-L1 --- tumor spheroid disruption --- immune modulation --- doxorubicin --- graphene oxide --- adsorption --- cathepsin D --- cathepsin L --- anti-metastatic enzyme cancer therapy --- nanoparticles --- targeted delivery system --- siRNA --- osteopontin --- mammary carcinoma --- mesenchymal stem cells (MSCs) --- TAT peptide --- PLGA --- paclitaxel --- nano-engineered MSCs --- orthotopic lung tumor model --- intracranial glioma --- immunotherapy --- CPMV --- viral nanoparticles --- in situ vaccine --- albumin nanoparticles --- microbubble --- ultrasound --- theranostics --- hepatocellular carcinoma --- VX2 tumor --- intra-arterial chemotherapy --- lung cancer --- nanomedicine --- clinical status --- cancer therapy --- breast cancer --- cell signaling --- active targeting --- passive targeting --- EPR effect --- oncogenes --- nanoparticle --- drug delivery --- ligand --- tumor targeting --- biodistribution --- Mesoporous silica nanoparticle --- drug delivery system --- target treatment --- lanthanide metal --- hyaluronic acid --- hyaluronidase --- drug combination --- everolimus --- dual-targeting --- magnetic nanoparticles --- monoclonal antibodies --- nanostructured lipid carrier --- platelet membrane --- biomimicry --- plasmonic photothermal therapy --- gold nanorods --- surgery --- bleeding --- dogs --- cats --- stimuli-responsive --- DOX --- SN38 --- CSCs --- single-walled carbon nanotubes --- chirality separation --- NASH --- drug-gene delivery --- near IR hyperspectral imaging --- plasmonics --- copper --- VEGF --- glioblastoma --- differentiated neuroblastoma --- peptidomimetics --- real-time quantitative polymerase chain reaction (qPCR) --- actin --- combinatorial therapy --- anticancer and antibacterial activity --- temoporfin --- drug-in-cyclodextrin-in-liposome --- hybrid nanoparticles --- multicellular tumor spheroids --- cyclodextrins --- photodynamic therapy article --- yet reasonably common within the subject discipline --- antitumor strategy --- biomimetic core–shell nanoparticles --- NK cell-derived exosomes --- folate receptor --- albumin nanoparticle --- microfluidic --- cabazitaxel --- polydopamine nanoparticles --- size --- cytotoxicity --- iron affinity --- FA-DABA-SMA --- self-assembly --- oncogenic proteins --- intracellular disruption --- folic receptor alpha --- pancreatic cancer --- parvifloron D --- albumin --- erlotinib --- photodynamic therapy --- lipid nanoparticles --- tumor vectorization --- verteporfin --- ovarian carcinomatosis --- spheroids --- integrin --- RGD peptide --- cancer diagnosis --- radiotherapy --- hyperthermia therapy --- biomimetic --- nanocarrier --- membrane-wrapped --- cancer --- targeted delivery --- photothermal therapy --- imaging --- cancer nanomedicine --- tumor microenvironment --- nano–bio interactions --- clinical translation --- magnetic nanowires --- magnetic hyperthermia --- magnetic actuation --- magnetic drug targeting --- titanate nanotubes --- gold nanoparticles --- vectorization --- colloidal stability --- docetaxel --- prostate cancer --- mangiferin --- anti-topoisomerase activity --- extracellular vesicles --- exosomes --- chemico-physical functionalization --- loading --- translational medicine --- nanotechnology: bioengineering --- anacardic acid --- mitoxantrone --- targeted drug delivery --- liposomes --- melanoma --- apoptosis --- ascorbic acid --- angiogenesis --- epithelial-to-mesenchymal transition --- hypoxia --- immunosuppression --- metabolism --- nanotherapeutics --- tumour microenvironment --- DNA origami --- liposome --- remote loading --- acute toxicity --- organoids --- magnetic silica-coated iron oxide nanochains --- photothermal treatment --- hyperthermia --- collagen --- cellular microenvironment --- lymphadenectomy --- magnetometer --- sentinel lymph node dissection --- SPION --- superparamagnetic iron oxide nanoparticles --- Vδ2 T cells --- zoledronic acid --- polymeric nanoconstruct --- anti-tumor immunity --- colorectal carcinoma --- β-cyclodextrin nanosponges --- BALB-neuT mice --- brain tumours --- glioma --- blood brain barrier --- polymeric nanoparticles --- PEGylation --- dioleoylphosphatidylethanolamine --- poly(hydroxyethyl acrylate-co-allyl methyl sulfide) copolymer --- folate --- oxidation-sensitive release --- cellular interaction --- in vitro anti-cancer activity --- triple negative breast cancer --- organotin --- mesoporous silica nanoparticles --- MDA-MB-231 --- theranostic nanomaterials --- nanobiotechnology --- molecular imaging --- nanosystems --- nanomicelles --- ovarian cancer --- tumour targeting --- chemotherapeutics --- riboflavin --- vitamin B2 --- nanomedicines --- secondary structure --- mixed micelle --- pH responsive --- targeted therapy --- anti-cancer --- shear stress --- flow --- in vitro --- therapeutics --- diagnostics --- Immunotherapy

Listing 1 - 6 of 6
Sort by