Listing 1 - 9 of 9 |
Sort by
|
Choose an application
This important book is the first detailed analytical treatment of the Anti-Counterfeiting Trade Agreement (ACTA) and its impact on intellectual property enforcement. The ACTA had been formulated to deal with the burgeoning growth in the trade in counterfeit and pirate products which was estimated to have increased ten-fold since the promulgation of the TRIPS Agreement in 1994. The book clarifies how the ACTA supplements the enforcement provisions of the TRIPS Agreement, namely by: expanding the reach of border protection to infringing goods in transit; providing greater detail of the implement
Choose an application
The Anti-Counterfeiting Trade Agreement (ACTA) is the most important effort undertaken to lay down a plurilateral legal framework for the enforcement of intellectual property rights. With the view to learn more about the origins of this treaty, the process leading to its conclusion and its implications for law making in this field, The ACTA and the Plurilateral Enforcement Agenda: Genesis and Aftermath analyses in great depth both the context and the content of the agreements. In order to attain this objective, a large and diverse group of experts - renowned scholars, policy makers, civil society and industry actors - who represent different perspectives on the necessary balance between intellectual property enforcement and other economic and social interests have been gathered together. This book is the most comprehensive analysis of ACTA, and of its relation with ongoing initiatives to improve enforcement of intellectual property and norms pertaining to a range of international legal regimes, conducted so far.
Product counterfeiting --- Industrial property (International law) --- International law --- Competition, Unfair --- Law and legislation. --- Anti-Counterfeiting Trade Agreement --- ACTA
Choose an application
The issue of how patents impact medicine has increased in significance within the last decade. The book provides an explanation of the current international infrastructure and explains how competing patent perspectives play a thus far unacknowledged role in promoting distortion and confusion.
Drug delivery devices --- Health services accessibility --- Right to health --- Public health laws --- Pharmaceutical policy --- Drugs --- Intellectual property (International law) --- Pharmaceutical industry --- Médicaments --- Services de santé --- Droit à la santé --- Santé publique --- Propriété intellectuelle (Droit international) --- Industrie pharmaceutique --- Law and legislation --- Patents. --- Technological innovations. --- Administration --- Dispositifs --- Accessibilité --- Droit --- Politique gouvernementale --- Brevets d'invention --- Innovations --- Agreement on Trade-Related Aspects of Intellectual Property Rights (1994) --- Anti-counterfeiting Trade Agreement --- Technological innovations --- Intellectual property (International law). --- Médicaments --- Services de santé --- Droit à la santé --- Santé publique --- Propriété intellectuelle (Droit international) --- Accessibilité --- Drugs - Patents --- Pharmaceutical industry - Technological innovations --- Droit médical
Choose an application
This book presents a collection of 13 original research articles that focus on the science of light–matter interaction. This area of science has been led to some the greatest accomplishments of the past 100 years, with the discovery of materials that perform useful operations by collecting light or generating light from an outside stimulus. These materials are at the center of a multitude of technologies that have permeated our daily life; every day we rely on quantum well lasers for telecommunication, organic light emitting diodes for our displays, complementary metal–oxide–semiconductors for our camera detectors, and of course a plethora of new photovoltaic cells that harvest sunlight to satisfy our energy needs. In this book, top-rated researchers present their latest findings in the field of nano-particles, plasmonics, semi-conductors, magneto-optics, and holography.
Research & information: general --- Technology: general issues --- faraday rotator material --- optical isolator --- transparent ceramics --- photopolymerizable --- thiol-ene network --- scratch-healing --- transparent --- dyeing --- unsaturated polyester resin --- azobenzene --- hologram --- aqueous dispersion --- plasmonic nanoparticles --- nonlinear acousto-optics --- nanofluids --- ultrasonic sensors --- silicon photonics --- optical waveguide --- smectic A liquid crystal (SALC) --- stimulated light scattering (SLS) --- holography --- photochromism --- diarylethenes --- refractive index --- CGH --- magnetic-optical bi-functional materials --- hydrothermal process --- down-conversion luminescence --- Na3FeF6:Tb3+ --- magnetic-luminescent structure --- hybrid system --- ternary quantum dots --- magnetic nanoparticles --- iron oxide --- calcium carbonate microspheres --- sensor --- nanoparticles --- silica shells --- metal nanoparticles --- gold-silver nanoshells --- core-shell nanoparticles --- magneto-optics --- mcd --- faraday rotation --- figure of merit --- polarization --- oxygen plasma treatment --- photopolymer --- temperature --- CTE --- thermal degradation --- hexagonal boron nitride --- photoluminescence --- cerium --- anti-counterfeiting --- crystals --- faraday rotator material --- optical isolator --- transparent ceramics --- photopolymerizable --- thiol-ene network --- scratch-healing --- transparent --- dyeing --- unsaturated polyester resin --- azobenzene --- hologram --- aqueous dispersion --- plasmonic nanoparticles --- nonlinear acousto-optics --- nanofluids --- ultrasonic sensors --- silicon photonics --- optical waveguide --- smectic A liquid crystal (SALC) --- stimulated light scattering (SLS) --- holography --- photochromism --- diarylethenes --- refractive index --- CGH --- magnetic-optical bi-functional materials --- hydrothermal process --- down-conversion luminescence --- Na3FeF6:Tb3+ --- magnetic-luminescent structure --- hybrid system --- ternary quantum dots --- magnetic nanoparticles --- iron oxide --- calcium carbonate microspheres --- sensor --- nanoparticles --- silica shells --- metal nanoparticles --- gold-silver nanoshells --- core-shell nanoparticles --- magneto-optics --- mcd --- faraday rotation --- figure of merit --- polarization --- oxygen plasma treatment --- photopolymer --- temperature --- CTE --- thermal degradation --- hexagonal boron nitride --- photoluminescence --- cerium --- anti-counterfeiting --- crystals
Choose an application
This book presents a collection of 13 original research articles that focus on the science of light–matter interaction. This area of science has been led to some the greatest accomplishments of the past 100 years, with the discovery of materials that perform useful operations by collecting light or generating light from an outside stimulus. These materials are at the center of a multitude of technologies that have permeated our daily life; every day we rely on quantum well lasers for telecommunication, organic light emitting diodes for our displays, complementary metal–oxide–semiconductors for our camera detectors, and of course a plethora of new photovoltaic cells that harvest sunlight to satisfy our energy needs. In this book, top-rated researchers present their latest findings in the field of nano-particles, plasmonics, semi-conductors, magneto-optics, and holography.
Research & information: general --- Technology: general issues --- faraday rotator material --- optical isolator --- transparent ceramics --- photopolymerizable --- thiol-ene network --- scratch-healing --- transparent --- dyeing --- unsaturated polyester resin --- azobenzene --- hologram --- aqueous dispersion --- plasmonic nanoparticles --- nonlinear acousto-optics --- nanofluids --- ultrasonic sensors --- silicon photonics --- optical waveguide --- smectic A liquid crystal (SALC) --- stimulated light scattering (SLS) --- holography --- photochromism --- diarylethenes --- refractive index --- CGH --- magnetic-optical bi-functional materials --- hydrothermal process --- down-conversion luminescence --- Na3FeF6:Tb3+ --- magnetic–luminescent structure --- hybrid system --- ternary quantum dots --- magnetic nanoparticles --- iron oxide --- calcium carbonate microspheres --- sensor --- nanoparticles --- silica shells --- metal nanoparticles --- gold-silver nanoshells --- core-shell nanoparticles --- magneto-optics --- mcd --- faraday rotation --- figure of merit --- polarization --- oxygen plasma treatment --- photopolymer --- temperature --- CTE --- thermal degradation --- hexagonal boron nitride --- photoluminescence --- cerium --- anti-counterfeiting --- crystals --- n/a --- magnetic-luminescent structure
Choose an application
This book presents a collection of 13 original research articles that focus on the science of light–matter interaction. This area of science has been led to some the greatest accomplishments of the past 100 years, with the discovery of materials that perform useful operations by collecting light or generating light from an outside stimulus. These materials are at the center of a multitude of technologies that have permeated our daily life; every day we rely on quantum well lasers for telecommunication, organic light emitting diodes for our displays, complementary metal–oxide–semiconductors for our camera detectors, and of course a plethora of new photovoltaic cells that harvest sunlight to satisfy our energy needs. In this book, top-rated researchers present their latest findings in the field of nano-particles, plasmonics, semi-conductors, magneto-optics, and holography.
faraday rotator material --- optical isolator --- transparent ceramics --- photopolymerizable --- thiol-ene network --- scratch-healing --- transparent --- dyeing --- unsaturated polyester resin --- azobenzene --- hologram --- aqueous dispersion --- plasmonic nanoparticles --- nonlinear acousto-optics --- nanofluids --- ultrasonic sensors --- silicon photonics --- optical waveguide --- smectic A liquid crystal (SALC) --- stimulated light scattering (SLS) --- holography --- photochromism --- diarylethenes --- refractive index --- CGH --- magnetic-optical bi-functional materials --- hydrothermal process --- down-conversion luminescence --- Na3FeF6:Tb3+ --- magnetic–luminescent structure --- hybrid system --- ternary quantum dots --- magnetic nanoparticles --- iron oxide --- calcium carbonate microspheres --- sensor --- nanoparticles --- silica shells --- metal nanoparticles --- gold-silver nanoshells --- core-shell nanoparticles --- magneto-optics --- mcd --- faraday rotation --- figure of merit --- polarization --- oxygen plasma treatment --- photopolymer --- temperature --- CTE --- thermal degradation --- hexagonal boron nitride --- photoluminescence --- cerium --- anti-counterfeiting --- crystals --- n/a --- magnetic-luminescent structure
Choose an application
Sonic/phononic crystals termed acoustic/sonic band gap media are elastic analogues of photonic crystals and have also recently received renewed attention in many acoustic applications. Photonic crystals have a periodic dielectric modulation with a spatial scale on the order of the optical wavelength. The design and optimization of photonic crystals can be utilized in many applications by combining factors related to the combinations of intermixing materials, lattice symmetry, lattice constant, filling factor, shape of the scattering object, and thickness of a structural layer. Through the publications and discussions of the research on sonic/phononic crystals, researchers can obtain effective and valuable results and improve their future development in related fields. Devices based on these crystals can be utilized in mechanical and physical applications and can also be designed for novel applications as based on the investigations in this Special Issue.
History of engineering & technology --- optical force --- photonic crystal cavity --- particle trapping --- optomechanical sensing --- polarization converter --- photonic crystal fiber --- square lattice --- extinction ratio --- polarization splitter --- dual-core photonic crystal fiber --- coupling characteristics --- phononic crystal --- auxetic structure --- star-shaped honeycomb structure --- wave propagation --- orbital angular momentum --- modal dispersion --- stress-induced birefringence --- finite element method --- mode-division multiplexing --- Erbium-doped fiber amplifier --- photonic crystal fibers --- cylindrical lens --- photonic nanojet --- graded-index --- vibration energy harvester --- defect bands --- piezoelectric material --- magnetostrictive material --- output voltage and power --- locally resonant --- band gap --- differential quadrature method --- direct laser writing --- KTP --- nonlinear optics --- photonic coupling --- energy harvesting --- defect modes --- phononic crystals (PCs) --- colloidal photonic crystals --- tunable photonic band gaps --- anti-counterfeiting --- coupled elastic waves --- laminated piezoelectric phononic crystals --- arbitrarily anisotropic materials --- band tunability --- electrical boundaries --- dispersion curves --- photonic crystals --- photonic bandgaps --- polymer materials --- acoustic metamaterial --- effective medium --- bubble resonance --- negative modulus --- graphene --- kerr effect --- optical switch --- photonic band gap --- photonic crystal --- microwave photonics --- optical frequency combs --- waveguide --- complete PBG --- PDOS --- TE --- TM --- beam shaping --- angular filtering --- autocloning --- multilayered structures --- sensor --- sensitivity --- figure of merit --- optical force --- photonic crystal cavity --- particle trapping --- optomechanical sensing --- polarization converter --- photonic crystal fiber --- square lattice --- extinction ratio --- polarization splitter --- dual-core photonic crystal fiber --- coupling characteristics --- phononic crystal --- auxetic structure --- star-shaped honeycomb structure --- wave propagation --- orbital angular momentum --- modal dispersion --- stress-induced birefringence --- finite element method --- mode-division multiplexing --- Erbium-doped fiber amplifier --- photonic crystal fibers --- cylindrical lens --- photonic nanojet --- graded-index --- vibration energy harvester --- defect bands --- piezoelectric material --- magnetostrictive material --- output voltage and power --- locally resonant --- band gap --- differential quadrature method --- direct laser writing --- KTP --- nonlinear optics --- photonic coupling --- energy harvesting --- defect modes --- phononic crystals (PCs) --- colloidal photonic crystals --- tunable photonic band gaps --- anti-counterfeiting --- coupled elastic waves --- laminated piezoelectric phononic crystals --- arbitrarily anisotropic materials --- band tunability --- electrical boundaries --- dispersion curves --- photonic crystals --- photonic bandgaps --- polymer materials --- acoustic metamaterial --- effective medium --- bubble resonance --- negative modulus --- graphene --- kerr effect --- optical switch --- photonic band gap --- photonic crystal --- microwave photonics --- optical frequency combs --- waveguide --- complete PBG --- PDOS --- TE --- TM --- beam shaping --- angular filtering --- autocloning --- multilayered structures --- sensor --- sensitivity --- figure of merit
Choose an application
Sonic/phononic crystals termed acoustic/sonic band gap media are elastic analogues of photonic crystals and have also recently received renewed attention in many acoustic applications. Photonic crystals have a periodic dielectric modulation with a spatial scale on the order of the optical wavelength. The design and optimization of photonic crystals can be utilized in many applications by combining factors related to the combinations of intermixing materials, lattice symmetry, lattice constant, filling factor, shape of the scattering object, and thickness of a structural layer. Through the publications and discussions of the research on sonic/phononic crystals, researchers can obtain effective and valuable results and improve their future development in related fields. Devices based on these crystals can be utilized in mechanical and physical applications and can also be designed for novel applications as based on the investigations in this Special Issue.
History of engineering & technology --- optical force --- photonic crystal cavity --- particle trapping --- optomechanical sensing --- polarization converter --- photonic crystal fiber --- square lattice --- extinction ratio --- polarization splitter --- dual-core photonic crystal fiber --- coupling characteristics --- phononic crystal --- auxetic structure --- star-shaped honeycomb structure --- wave propagation --- orbital angular momentum --- modal dispersion --- stress-induced birefringence --- finite element method --- mode-division multiplexing --- Erbium-doped fiber amplifier --- photonic crystal fibers --- cylindrical lens --- photonic nanojet --- graded-index --- vibration energy harvester --- defect bands --- piezoelectric material --- magnetostrictive material --- output voltage and power --- locally resonant --- band gap --- differential quadrature method --- direct laser writing --- KTP --- nonlinear optics --- photonic coupling --- energy harvesting --- defect modes --- phononic crystals (PCs) --- colloidal photonic crystals --- tunable photonic band gaps --- anti-counterfeiting --- coupled elastic waves --- laminated piezoelectric phononic crystals --- arbitrarily anisotropic materials --- band tunability --- electrical boundaries --- dispersion curves --- photonic crystals --- photonic bandgaps --- polymer materials --- acoustic metamaterial --- effective medium --- bubble resonance --- negative modulus --- graphene --- kerr effect --- optical switch --- photonic band gap --- photonic crystal --- microwave photonics --- optical frequency combs --- waveguide --- complete PBG --- PDOS --- TE --- TM --- beam shaping --- angular filtering --- autocloning --- multilayered structures --- sensor --- sensitivity --- figure of merit --- n/a
Choose an application
Sonic/phononic crystals termed acoustic/sonic band gap media are elastic analogues of photonic crystals and have also recently received renewed attention in many acoustic applications. Photonic crystals have a periodic dielectric modulation with a spatial scale on the order of the optical wavelength. The design and optimization of photonic crystals can be utilized in many applications by combining factors related to the combinations of intermixing materials, lattice symmetry, lattice constant, filling factor, shape of the scattering object, and thickness of a structural layer. Through the publications and discussions of the research on sonic/phononic crystals, researchers can obtain effective and valuable results and improve their future development in related fields. Devices based on these crystals can be utilized in mechanical and physical applications and can also be designed for novel applications as based on the investigations in this Special Issue.
optical force --- photonic crystal cavity --- particle trapping --- optomechanical sensing --- polarization converter --- photonic crystal fiber --- square lattice --- extinction ratio --- polarization splitter --- dual-core photonic crystal fiber --- coupling characteristics --- phononic crystal --- auxetic structure --- star-shaped honeycomb structure --- wave propagation --- orbital angular momentum --- modal dispersion --- stress-induced birefringence --- finite element method --- mode-division multiplexing --- Erbium-doped fiber amplifier --- photonic crystal fibers --- cylindrical lens --- photonic nanojet --- graded-index --- vibration energy harvester --- defect bands --- piezoelectric material --- magnetostrictive material --- output voltage and power --- locally resonant --- band gap --- differential quadrature method --- direct laser writing --- KTP --- nonlinear optics --- photonic coupling --- energy harvesting --- defect modes --- phononic crystals (PCs) --- colloidal photonic crystals --- tunable photonic band gaps --- anti-counterfeiting --- coupled elastic waves --- laminated piezoelectric phononic crystals --- arbitrarily anisotropic materials --- band tunability --- electrical boundaries --- dispersion curves --- photonic crystals --- photonic bandgaps --- polymer materials --- acoustic metamaterial --- effective medium --- bubble resonance --- negative modulus --- graphene --- kerr effect --- optical switch --- photonic band gap --- photonic crystal --- microwave photonics --- optical frequency combs --- waveguide --- complete PBG --- PDOS --- TE --- TM --- beam shaping --- angular filtering --- autocloning --- multilayered structures --- sensor --- sensitivity --- figure of merit --- n/a
Listing 1 - 9 of 9 |
Sort by
|