Narrow your search

Library

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

VIVES (4)

KU Leuven (3)

LUCA School of Arts (3)

ULB (3)

ULiège (3)

FARO (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (1)

2019 (3)

2018 (1)

2013 (1)

Listing 1 - 6 of 6
Sort by

Book
Heat Transfer Modelling Using COMSOL
Author:
ISBN: 152312038X 1683921739 9781683921738 9781523120383 9781683921721 1683921720 9781683922872 1683922875 Year: 2018 Publisher: Herndon


Book
Bioimage Data Analysis Workflows ‒ Advanced Components and Methods
Authors: --- ---
ISBN: 3030763943 3030763935 Year: 2022 Publisher: Cham Springer Nature

Loading...
Export citation

Choose an application

Bookmark

Abstract

This open access textbook aims at providing detailed explanations on how to design and construct image analysis workflows to successfully conduct bioimage analysis. Addressing the main challenges in image data analysis, where acquisition by powerful imaging devices results in very large amounts of collected image data, the book discusses techniques relying on batch and GPU programming, as well as on powerful deep learning-based algorithms. In addition, downstream data processing techniques are introduced, such as Python libraries for data organization, plotting, and visualizations. Finally, by studying the way individual unique ideas are implemented in the workflows, readers are carefully guided through how the parameters driving biological systems are revealed by analyzing image data. These studies include segmentation of plant tissue epidermis, analysis of the spatial pattern of the eye development in fruit flies, and the analysis of collective cell migration dynamics. The presented content extends the Bioimage Data Analysis Workflows textbook (Miura, Sladoje, 2020), published in this same series, with new contributions and advanced material, while preserving the well-appreciated pedagogical approach adopted and promoted during the training schools for bioimage analysis organized within NEUBIAS – the Network of European Bioimage Analysts. This textbook is intended for advanced students in various fields of the life sciences and biomedicine, as well as staff scientists and faculty members who conduct regular quantitative analyses of microscopy images.


Book
Volcanic Plumes.Impacts on the Atmosphere and Insights into Volcanic Processes
Authors: --- ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Volcanoes release plumes of gas and ash to the atmosphere during episodes of passive and explosive behavior. These ejecta have important implications for the chemistry and composition of the troposphere and stratosphere, with the capacity to alter Earth's radiation budget and climate system over a range of temporal and spatial scales. Volcanogenic sulphur dioxide reacts to form sulphate aerosols, which increase global albedo, e.g., by reducing surface temperatures, in addition to perturbing the formation processes and optical properties of clouds. Released halogen species can also deplete stratospheric and tropospheric ozone. Volcanic degassing, furthermore, played a key role in the formation of Earth’s atmosphere, and volcanic plumes can affect air quality, pose hazards to aviation and human health, as well as damage ecosystems. The chemical compositions and emission rates of volcanic plumes are also monitored via a range of direct-sampling and remote-sensing instrumentation, in order to gain insights into subterranean processes, in the respect of the magmatic bodies these volatiles exsolve from. Given the significant role these gases play in driving volcanic activity, e.g., via pressurisation, the study of volcanic plumes is proving to be an increasingly fruitful means of improving our understanding of volcanic systems, potentially in concert with observations from geophysics and contributions from fluid dynamical modelling of conduit dynamics.

Keywords

radioactive disequilibria 210Pb-210Bi-210Po --- volcanic geochemistry --- radiative transfer --- spherical-cap bubble --- plume --- satellite remote sensing --- portable photometry --- puffing --- Holuhraun --- interdisciplinary volcanology --- gas slug --- atmospheric remote sensing --- analysis software --- gases --- image processing --- remote sensing --- SEVIRI data --- oxygen and sulfur multi-isotopes --- nonlinear spectral unmixing --- UV cameras --- ultraviolet cameras --- cloud height --- atmospheric chemistry --- Python 2.7 --- degassing processes --- volcanic plumes --- fissure eruption --- radiative forcing --- basaltic volcanism --- volcanic plume top height --- O3 --- eruption start and duration --- Differential Absorption Lidar (DIAL) --- volcanic emissions --- volcanology --- volcanic CO2 flux --- volcanic aerosols --- 2011-2015 Etna lava fountains --- SO2 --- reactive halogen --- nonlinear PCA --- gas --- Etna volcano --- geochemical modelling --- BrO --- volcanic sulfate aerosols --- volcanic gases --- SSA --- hyperspectral remote sensing --- time averaged discharge rate --- eruption monitoring --- Bárðarbunga --- strombolian --- aerosol optical properties --- Mount Etna --- Taylor bubble --- radioactive disequilibria 210Pb-210Bi-210Po --- volcanic geochemistry --- radiative transfer --- spherical-cap bubble --- plume --- satellite remote sensing --- portable photometry --- puffing --- Holuhraun --- interdisciplinary volcanology --- gas slug --- atmospheric remote sensing --- analysis software --- gases --- image processing --- remote sensing --- SEVIRI data --- oxygen and sulfur multi-isotopes --- nonlinear spectral unmixing --- UV cameras --- ultraviolet cameras --- cloud height --- atmospheric chemistry --- Python 2.7 --- degassing processes --- volcanic plumes --- fissure eruption --- radiative forcing --- basaltic volcanism --- volcanic plume top height --- O3 --- eruption start and duration --- Differential Absorption Lidar (DIAL) --- volcanic emissions --- volcanology --- volcanic CO2 flux --- volcanic aerosols --- 2011-2015 Etna lava fountains --- SO2 --- reactive halogen --- nonlinear PCA --- gas --- Etna volcano --- geochemical modelling --- BrO --- volcanic sulfate aerosols --- volcanic gases --- SSA --- hyperspectral remote sensing --- time averaged discharge rate --- eruption monitoring --- Bárðarbunga --- strombolian --- aerosol optical properties --- Mount Etna --- Taylor bubble


Book
The Courant–Friedrichs–Lewy (CFL) Condition : 80 Years After Its Discovery
Authors: ---
ISBN: 0817683933 0817683941 1283909774 Year: 2013 Publisher: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This volume comprises a carefully selected collection of articles emerging from and pertinent to the 2010 CFL-80 conference in Rio de Janeiro, celebrating the 80th  anniversary of the Courant–Friedrichs–Lewy (CFL) condition. A major result in the field of numerical analysis, the CFL condition has influenced the research of many important mathematicians over the past eight decades, and this work is meant to take stock of its most important and current applications. The Courant–Friedrichs–Lewy (CFL) Condition: 80 Years After its Discovery will be of interest to practicing mathematicians, engineers, physicists, and graduate students who work with numerical methods. Contributors: U. Ascher B. Cockburn E. Deriaz M.O. Domingues S.M. Gomes R. Hersh R. Jeltsch D. Kolomenskiy H. Kumar L.C. Lax P. Lax P. LeFloch A. Marica O. Roussel K. Schneider J. Tiexeira Cal Neto C. Tomei K. van den Doel E. Zuazua    .

Keywords

Differential equations, Partial. --- Information theory. --- Mathematics. --- Numerical analysis -- Software. --- Numerical analysis --- Information theory --- Differential equations, Partial --- Computer science --- Engineering mathematics --- Mathematics --- Engineering & Applied Sciences --- Physical Sciences & Mathematics --- Applied Mathematics --- Mathematics - General --- Engineering --- Engineering analysis --- Informatics --- Partial differential equations --- Communication theory --- Computers. --- Partial differential equations. --- Applied mathematics. --- Engineering mathematics. --- Computer mathematics. --- Physics. --- Computational Mathematics and Numerical Analysis. --- Partial Differential Equations. --- Theory of Computation. --- Numerical and Computational Physics. --- Appl.Mathematics/Computational Methods of Engineering. --- Applications of Mathematics. --- Natural philosophy --- Philosophy, Natural --- Physical sciences --- Dynamics --- Computer mathematics --- Discrete mathematics --- Electronic data processing --- Mathematical analysis --- Automatic computers --- Automatic data processors --- Computer hardware --- Computing machines (Computers) --- Electronic brains --- Electronic calculating-machines --- Electronic computers --- Hardware, Computer --- Computer systems --- Cybernetics --- Machine theory --- Calculators --- Cyberspace --- Math --- Science --- Differential equations, partial. --- Numerical and Computational Physics, Simulation. --- Mathematical and Computational Engineering. --- Communication --- Courant, Richard, --- Lewy, Hans, --- Friedrichs, K. O. --- Friedrichs, Kurt Otto, --- Kurant, Rikhard, --- Courant, R.


Book
Volcanic Plumes.Impacts on the Atmosphere and Insights into Volcanic Processes
Authors: --- ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Volcanoes release plumes of gas and ash to the atmosphere during episodes of passive and explosive behavior. These ejecta have important implications for the chemistry and composition of the troposphere and stratosphere, with the capacity to alter Earth's radiation budget and climate system over a range of temporal and spatial scales. Volcanogenic sulphur dioxide reacts to form sulphate aerosols, which increase global albedo, e.g., by reducing surface temperatures, in addition to perturbing the formation processes and optical properties of clouds. Released halogen species can also deplete stratospheric and tropospheric ozone. Volcanic degassing, furthermore, played a key role in the formation of Earth’s atmosphere, and volcanic plumes can affect air quality, pose hazards to aviation and human health, as well as damage ecosystems. The chemical compositions and emission rates of volcanic plumes are also monitored via a range of direct-sampling and remote-sensing instrumentation, in order to gain insights into subterranean processes, in the respect of the magmatic bodies these volatiles exsolve from. Given the significant role these gases play in driving volcanic activity, e.g., via pressurisation, the study of volcanic plumes is proving to be an increasingly fruitful means of improving our understanding of volcanic systems, potentially in concert with observations from geophysics and contributions from fluid dynamical modelling of conduit dynamics.


Book
Volcanic Plumes.Impacts on the Atmosphere and Insights into Volcanic Processes
Authors: --- ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Volcanoes release plumes of gas and ash to the atmosphere during episodes of passive and explosive behavior. These ejecta have important implications for the chemistry and composition of the troposphere and stratosphere, with the capacity to alter Earth's radiation budget and climate system over a range of temporal and spatial scales. Volcanogenic sulphur dioxide reacts to form sulphate aerosols, which increase global albedo, e.g., by reducing surface temperatures, in addition to perturbing the formation processes and optical properties of clouds. Released halogen species can also deplete stratospheric and tropospheric ozone. Volcanic degassing, furthermore, played a key role in the formation of Earth’s atmosphere, and volcanic plumes can affect air quality, pose hazards to aviation and human health, as well as damage ecosystems. The chemical compositions and emission rates of volcanic plumes are also monitored via a range of direct-sampling and remote-sensing instrumentation, in order to gain insights into subterranean processes, in the respect of the magmatic bodies these volatiles exsolve from. Given the significant role these gases play in driving volcanic activity, e.g., via pressurisation, the study of volcanic plumes is proving to be an increasingly fruitful means of improving our understanding of volcanic systems, potentially in concert with observations from geophysics and contributions from fluid dynamical modelling of conduit dynamics.

Listing 1 - 6 of 6
Sort by