Listing 1 - 4 of 4 |
Sort by
|
Choose an application
" This guide is intended for use by industry stakeholders, decision-makers and digester operators in navigating the topic of trace element (TE) supplementation as a management tool for anaerobic digester operation.The subject is the application of TE, and supplementation regimes in anaerobic waste-conversion biotechnologies, such as biogas digesters. TE is a term used to include a wide range of micronutrients essential for the microbial community underpinning AD. TE mostly includes elements from the metal groups (e.g. cobalt, nickel, zinc and tungsten) but also other elemental groups, such as metalloids (e.g. selenium). TE are dosed to anaerobic digesters to boost biological activity and to increase biogas production rates. Little is understood about the concentrations and dosing strategies best suited to sustained supplementation and stable performance in anaerobic biotechnologies.A range of companies offer proprietary blends of trace elements for supplementation of anaerobic digesters. Very little joined-up information is available on the concentrations of individual TE best suited to improved digester performance. Moreover, typically no attention whatsoever is paid to the bioavailability of TE dosed to digesters i.e. despite high concentrations, TE may not be available for uptake by the microorganisms underpinning the digestion process.Based on extensive engagement with a range of stakeholders throughout the course of the recent EU COST Action on ‘The ecological roles of trace metals in anaerobic biotechnologies’, and particularly on feedback from industrial partners, it is clear that such a guide is needed by industry stakeholders, decision-makers and operators of anaerobic digesters."
Water supply & treatment --- anaerobic digester --- wastewater --- trace elements --- water --- Bioavailability --- Biogas --- Cobalt --- Copper --- Iron --- Microorganism --- Mineral (nutrient) --- Nickel --- Zinc
Choose an application
This book is a printed edition of the Special Issue Recent Advances in Water Management: Saving, Treatment and Reuse that was published in Water
anaerobic processes --- risk assessment --- B. adusta --- environmental education --- foreign countries --- ornamental plants --- filter media --- Pb(II) --- passive treatment systems --- lignin --- oxygen injection --- water treatment --- guidelines --- microbiological quality --- membrane technology --- contaminated sites --- pulp-and-paper-mill c --- milk production --- wastewater --- efficiency --- forest waste --- vertical flow --- emerging contaminant --- decomposition analysis --- active sites --- water --- sustainability --- water treatment technology --- adsorption thermodynamic --- surface water --- agricultural occupations --- zeolite --- conservation --- trickling filter --- hydrogen sulfide --- nitrification --- organic matter --- constructed wetlands --- sewerage --- water recycling --- treated wastewater reuse --- advanced oxidation processes (AOPs) --- odor control --- anammox bacteria --- wastewater treatment --- ferrous iron --- combined sewer --- surveys --- occurrence --- denitrification --- research and development strategy --- carbamazepine toxicity --- global patent data --- activated carbon adsorption --- China --- food industry --- COD --- palm mulch --- ferrous sulfide --- nano illite/smectite clay --- pharmaceuticals --- footprint --- conventional treatment processes --- anticorrosive agent --- pumping mains --- adsorption kinetics --- swine wastewater --- P. crysosporium --- micropollutant removal --- tezontle --- delignification --- partitioning --- white rot fungi --- river --- anaerobic digester --- benzotriazole
Choose an application
Anaerobic digestion (AD) is one of the oldest biotechnological processes and originally referred to biomass degradation under anoxic conditions in both natural and engineered systems. It has been used for decades to treat various waste streams and to produce methane-rich biogas as an important energy carrier, and it has become a major player in electrical power production. AD is a popular, mature technology, and our knowledge about the influencing process parameters as well as about the diverse microbial communities involved in the process has increased dramatically over the last few decades. To avoid competition with food and feed production, the AD feedstock spectrum has constantly been extended to waste products either rich in recalcitrant lignocellulose or containing inhibitory substances such as ammonia, which requires application of various pre-treatments or specific management of the microbial resources. Extending the definition of AD, it can also convert gases rich in hydrogen and carbon dioxide into methane that can substitute natural gas, which opens new opportunities by a direct link to traditional petrochemistry. Furthermore, AD can be coupled with emerging biotechnological applications, such as microbial electrochemical technologies or the production of medium-chain fatty acids by anaerobic fermentation. Ultimately, because of the wide range of applications, AD is still a very vital field in science. This Special Issue highlights some key topics of this research field.
anaerobic digestion --- solid digestate --- milling process --- sugars recovery --- energy balances --- bioethanol production --- biogas upgrading --- biomethane --- bio-succinic acid --- CO2 utilization --- feasibility assessment --- acetate --- lactate --- inoculum --- food waste --- sewage sludge --- lactic acid bacteria --- cattle manure --- steam explosion --- pre-treatment --- UASB --- co-digestion --- biogas --- high-rate anaerobic digestion --- energy recovery --- granular sludge --- renewable energy --- decentralized wastewater treatment --- two-stage anaerobic digestion --- Anammox --- enzyme application --- rheology of digestate --- methane --- aquaculture --- trout --- sludge --- wastewater --- drum sieve --- microfiltration --- settling --- waste-to-energy --- wet waste --- bioenergy --- techno-economic analysis --- ammonia inhibition --- chicken manure --- dairy cow manure --- high-solids anaerobic digestion --- inoculum adaptation --- volatile fatty acids --- dry batch anaerobic digestion --- percolation --- permeability --- Salmonella spp. --- Escherichia coli O157 --- Listeria monocytogenes --- Enterococcus faecalis --- Clostridium spp. --- digestate --- pathogens --- sustainable farming --- anaerobic digester --- antibiotics removal --- antimicrobial --- chlortetracycline --- Tylosin --- n/a
Choose an application
Anaerobic digestion (AD) is one of the oldest biotechnological processes and originally referred to biomass degradation under anoxic conditions in both natural and engineered systems. It has been used for decades to treat various waste streams and to produce methane-rich biogas as an important energy carrier, and it has become a major player in electrical power production. AD is a popular, mature technology, and our knowledge about the influencing process parameters as well as about the diverse microbial communities involved in the process has increased dramatically over the last few decades. To avoid competition with food and feed production, the AD feedstock spectrum has constantly been extended to waste products either rich in recalcitrant lignocellulose or containing inhibitory substances such as ammonia, which requires application of various pre-treatments or specific management of the microbial resources. Extending the definition of AD, it can also convert gases rich in hydrogen and carbon dioxide into methane that can substitute natural gas, which opens new opportunities by a direct link to traditional petrochemistry. Furthermore, AD can be coupled with emerging biotechnological applications, such as microbial electrochemical technologies or the production of medium-chain fatty acids by anaerobic fermentation. Ultimately, because of the wide range of applications, AD is still a very vital field in science. This Special Issue highlights some key topics of this research field.
Research & information: general --- Biology, life sciences --- anaerobic digestion --- solid digestate --- milling process --- sugars recovery --- energy balances --- bioethanol production --- biogas upgrading --- biomethane --- bio-succinic acid --- CO2 utilization --- feasibility assessment --- acetate --- lactate --- inoculum --- food waste --- sewage sludge --- lactic acid bacteria --- cattle manure --- steam explosion --- pre-treatment --- UASB --- co-digestion --- biogas --- high-rate anaerobic digestion --- energy recovery --- granular sludge --- renewable energy --- decentralized wastewater treatment --- two-stage anaerobic digestion --- Anammox --- enzyme application --- rheology of digestate --- methane --- aquaculture --- trout --- sludge --- wastewater --- drum sieve --- microfiltration --- settling --- waste-to-energy --- wet waste --- bioenergy --- techno-economic analysis --- ammonia inhibition --- chicken manure --- dairy cow manure --- high-solids anaerobic digestion --- inoculum adaptation --- volatile fatty acids --- dry batch anaerobic digestion --- percolation --- permeability --- Salmonella spp. --- Escherichia coli O157 --- Listeria monocytogenes --- Enterococcus faecalis --- Clostridium spp. --- digestate --- pathogens --- sustainable farming --- anaerobic digester --- antibiotics removal --- antimicrobial --- chlortetracycline --- Tylosin --- anaerobic digestion --- solid digestate --- milling process --- sugars recovery --- energy balances --- bioethanol production --- biogas upgrading --- biomethane --- bio-succinic acid --- CO2 utilization --- feasibility assessment --- acetate --- lactate --- inoculum --- food waste --- sewage sludge --- lactic acid bacteria --- cattle manure --- steam explosion --- pre-treatment --- UASB --- co-digestion --- biogas --- high-rate anaerobic digestion --- energy recovery --- granular sludge --- renewable energy --- decentralized wastewater treatment --- two-stage anaerobic digestion --- Anammox --- enzyme application --- rheology of digestate --- methane --- aquaculture --- trout --- sludge --- wastewater --- drum sieve --- microfiltration --- settling --- waste-to-energy --- wet waste --- bioenergy --- techno-economic analysis --- ammonia inhibition --- chicken manure --- dairy cow manure --- high-solids anaerobic digestion --- inoculum adaptation --- volatile fatty acids --- dry batch anaerobic digestion --- percolation --- permeability --- Salmonella spp. --- Escherichia coli O157 --- Listeria monocytogenes --- Enterococcus faecalis --- Clostridium spp. --- digestate --- pathogens --- sustainable farming --- anaerobic digester --- antibiotics removal --- antimicrobial --- chlortetracycline --- Tylosin
Listing 1 - 4 of 4 |
Sort by
|