Listing 1 - 2 of 2 |
Sort by
|
Choose an application
Nanocelluloses: Synthesis, Modification and Applications is a book that provides some recent enhancements of various types of nanocellulose, mainly bacterial nanocellulose, cellulose nanocrystals and nanofibrils, and their nanocomposites. Bioactive bacterial nanocellulose finds applications in biomedical applications, https://doi.org/10.3390/nano9101352. Grafting and cross-linking bacterial nanocellulose modification emerges as a good choice for improving the potential of bacterial nanocellulose in such biomedical applications as topical wound dressings and tissue-engineering scaffolds, https://doi.org/10.3390/nano9121668. On the other hand, bacterial nanocellulose can be used as paper additive for fluorescent paper, https://doi.org/10.3390/nano9091322, and for the reinforcement of paper made from recycled fibers, https://doi.org/10.3390/nano9010058. Nanocellulose membranes are used for up-to-date carbon capture applications, https://doi.org/10.3390/nano9060877. Nanocellulose has been applied as a novel component of membranes designed to address a large spectrum of filtration problems, https://doi.org/10.3390/nano9060867. Poly(vinyl alcohol) (PVA) and cellulose nanocrystals (CNC) in random composite mats prepared using the electrospinning method are widely characterized in a large range of physical chemical aspects, https://doi.org/10.3390/nano9050805. Similarly, physical chemical aspects are emphasized for carboxylated cellulose nanofibrils produced by ammonium persulfate oxidation combined with ultrasonic and mechanical treatment, https://doi.org/10.3390/nano8090640. It is extraordinary how nanocellulose can find application in such different fields. Along the same lines, the contributions in this book come from numerous different countries, confirming the great interest of the scientific community for nanocellulose.
tensile strength --- amino acid --- poly (vinyl alcohol) --- Eu ion --- recycled fiber --- bacterial nanocellulose --- Fenton reagent --- cross-linking --- electrospinning --- biomedical applications --- complex --- fluorescent paper --- nanocomposite --- vancomycin --- reinforcement --- carbon source --- in situ modification --- facilitated transport --- water application --- scanning electron microscopy --- nanocellulose --- cellulosic fiber --- rheology --- polymer nanocomposites --- selective separation --- durability --- oxidation --- thermogravimetric analysis --- ex situ modification --- methacrylate --- nanofibrils --- bacterial cellulose --- ammonium persulfate --- high shear mixer --- ionic liquid --- tensile properties --- bioactive bacterial nanocellulose --- gas separation membranes --- CO2 separation --- dispersion --- cellulose nanocrystals --- ciprofloxacin
Choose an application
This Special Issue focuses on the current state-of-the-art of “Polymer Clay Nano-Composites” for biomedical, anticorrosion, antibacterial, and other applications. Clay–polymer composite nanomaterials represent an emerging area of research. Loading polymers with clay particles essentially enhances the composite strength features. Of particular interest are different nano-assembly methods, such as silane mono and multilayers, polyelectrolyte layer-by-layer assembly, and others. An important development was reached for tubular and fibrous clay nanoparticles, such as halloysite, sepiolite, and imogolite. Polymer clay nanoparticles can be prepared as sheets with 1-nm thickness and width of a few hundred nm (e.g., kaolin and montmorillonite). Fibrous clays significantly reinforce the nano-composites in the assembly with biopolymers and other green polymers, leading to functional hybrid bio nano-composites. The scope of this Special Issue comprehensively includes the synthesis and characterization of polymer clay nano-composites used for several applications, including nano-clay polymer composites and hybrid nano-assemblies.
graphene oxide --- n/a --- polysaccharide --- water resistance --- nanocomposites --- layered silicate --- polyimide --- intercalation --- barrier --- composite --- indentation recovery --- ionic network --- organically modified clays --- nanotechnology --- 2-polybutadiene --- doxorubicin --- sericite --- adsorption --- morphology --- phenyltrimethylammonium chloride --- supercritical CO2 --- blowing agent --- halloysite nanotubes --- mechanical properties --- glycerol --- ammonium persulfate --- TGA --- 1 --- interfacial interactions --- carbon fibers --- nanocomposite materials --- silica sol --- N?-methylenebisacrylamide --- intercalation stability --- polymer composites --- clay–polymer nanocomposites --- in-situ intercalation --- attapulgite/polypyrrole nanocomposite --- fish gelatin --- polyacrylic acid --- fuzzy optimization --- AFM --- variable cost --- organic montmorillonite --- positron annihilation --- whey protein isolate --- interface --- CTAB --- N --- hyaluronic acid --- swelling capacity --- water shutoff --- montmorillonite --- sol–gel transition --- in situ polymerization --- hexadecyltrimethylammonium bromide --- clay-amine interaction mechanisms --- gelation kinetics --- FTIR --- surface grafting --- Pareto set --- la uptake and release --- polyamines --- polystyrene foam --- CD44 receptor targeted --- tribological property --- polyethylene oxide --- structure effects --- catalytic composite --- polystyrene --- nanoclay --- thermal stability --- sacrificial bond --- Pd catalysis --- radical polymerization --- dental resins --- reinforcing --- montmorillonite clays --- coatings --- atrazine --- cellulose nanofibrils --- soap-free emulsion polymerization --- LAP --- doubly functionalized montmorillonite --- dispersion --- organo-clays --- clay-polymer nanocomposites --- sol-gel transition
Listing 1 - 2 of 2 |
Sort by
|