Narrow your search
Listing 1 - 10 of 13 << page
of 2
>>
Sort by

Dissertation
Conception, synthèse et pharmacologie exploratoire de dérives originaux de l'amiloride en tant qu'inhibiteurs potentiels de l'échange sodium-calcium ou de l'échange sodium-proton. Tome II
Author:
Year: 2002 Publisher: Liège : Université de Liège. Faculté de Médecine. Département de Pharmacie. Centre interfacultaire de recherche en Pharmacochimie des substances naturelles et synthétiques,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

AMILORIDE


Dissertation
Conception, synthèse et pharmacologie exploratoire de dérives originaux de l'amiloride en tant qu'inhibiteurs potentiels de l'échange sodium-calcium ou de l'échange sodium-proton. Tome I
Author:
Year: 2002 Publisher: Liège : Université de Liège. Faculté de Médecine. Département de Pharmacie. Centre interfacultaire de recherche en Pharmacochimie des substances naturelles et synthétiques,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

AMILORIDE

Amiloride-sensitive sodium channels : physiology and functional diversity
Author:
ISBN: 0121533476 Year: 1999 Publisher: San Diego ; London ; Boston Academic press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Sodium channels --- Amiloride


Dissertation
Développement d'analogues des pyrazinoyl-guanidines, inhibiteurs potentiels de l'échange sodium-calcium : conception, synthèse, propriétés physico-chimiques, pharmacologie exploratoire et relations structure-activité
Authors: ---
Year: 1997 Publisher: [s. l. : chez l'auteur],

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Salt Taste, Nutrition, and Health
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Salt (NaCl) is a key component of the human diet because it provides the sodium ion (Na+), an essential mineral for our body. Na+ regulates extracellular fluid volume and plays a key role in many physiological processes, such as the generation of nerve impulses. Na+ is lost continuously through the kidneys, intestine, and sweating. Thus, to maintain proper bodily balance, losses have to be balanced with foods containing this cation. The need for salt explains our ability to detect Na+ in foodstuffs: Na+ elicits a specific taste sensation called “salty”, and gustatory sensitivity to this cation is crucial for regulating its intake. Indeed, the widespread use of salt in food products for flavoring and to improve their palatability exploits our sense of taste for Na+. When consumed in excess, however, salt might be detrimental to health because it may determine an increase in blood pressure—a major risk factor for many cardiovascular diseases. Understanding how salt taste works and how it affects food preference and consumption is therefore of paramount importance for improving human nutrition. This book comprises cutting-edge research dealing with salt taste mechanisms relevant for nutrition and health.


Book
Salt Taste, Nutrition, and Health
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Salt (NaCl) is a key component of the human diet because it provides the sodium ion (Na+), an essential mineral for our body. Na+ regulates extracellular fluid volume and plays a key role in many physiological processes, such as the generation of nerve impulses. Na+ is lost continuously through the kidneys, intestine, and sweating. Thus, to maintain proper bodily balance, losses have to be balanced with foods containing this cation. The need for salt explains our ability to detect Na+ in foodstuffs: Na+ elicits a specific taste sensation called “salty”, and gustatory sensitivity to this cation is crucial for regulating its intake. Indeed, the widespread use of salt in food products for flavoring and to improve their palatability exploits our sense of taste for Na+. When consumed in excess, however, salt might be detrimental to health because it may determine an increase in blood pressure—a major risk factor for many cardiovascular diseases. Understanding how salt taste works and how it affects food preference and consumption is therefore of paramount importance for improving human nutrition. This book comprises cutting-edge research dealing with salt taste mechanisms relevant for nutrition and health.


Book
Transition Metals in Catalysis : The Functional Relationship of Fe-S Clusters and Molybdenum or Tungsten Cofactor-Containing Enzyme Systems
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Iron–sulfur (FeS) centers are essential protein cofactors in all forms of life. They are involved in many key biological processes. In particular, Fe-S centers not only serve as enzyme cofactors in catalysis and electron transfer, they are also indispensable for the biosynthesis of complex metal-containing cofactors. Among these cofactors are the molybdenum (Moco) and tungsten (Wco) cofactors. Both Moco/Wco biosynthesis and Fe-S cluster assembly are highly conserved among all kingdoms of life. After formation, Fe-S clusters are transferred to carrier proteins, which insert them into recipient apo-proteins. Moco/Wco cofactors are composed of a tricyclic pterin compound, with the metal coordinated to its unique dithiolene group. Moco/Wco biosynthesis starts with an Fe-S cluster-dependent step involving radical/S-adenosylmethionine (SAM) chemistry. The current lack of knowledge of the connection of the assembly/biosynthesis of complex metal-containing cofactors is due to the sheer complexity of their synthesis with regard to both the (genetic) regulation and (chemical) metal center assembly. Studies on these metal-cofactors/cofactor-containing enzymes are important for understanding fundamental cellular processes. They will also provide a comprehensive view of the complex biosynthesis and the catalytic mechanism of metalloenzymes that underlie metal-related human diseases.

Keywords

Research & information: general --- Biology, life sciences --- CO dehydrogenase --- dihydrogen --- hydrogenase --- quantum/classical modeling --- density functional theory --- metal–dithiolene --- pyranopterin molybdenum enzymes --- fold-angle --- tungsten enzymes --- electronic structure --- pseudo-Jahn–Teller effect --- thione --- molybdenum cofactor --- Moco --- mixed-valence complex --- dithiolene ligand --- tetra-nuclear nickel complex --- X-ray structure --- magnetic moment --- formate hydrogenlyase --- hydrogen metabolism --- energy conservation --- MRP (multiple resistance and pH)-type Na+/H+ antiporter --- CCCP—carbonyl cyanide m-chlorophenyl-hydrazone --- EIPA—5-(N-ethyl-N-isopropyl)-amiloride --- nicotinamide adenine dinucleotide (NADH) --- electron transfer --- enzyme kinetics --- enzyme structure --- formate dehydrogenase --- carbon assimilation --- Moco biosynthesis --- Fe-S cluster assembly --- l-cysteine desulfurase --- ISC --- SUF --- NIF --- iron --- molybdenum --- sulfur --- tungsten cofactor --- aldehyde:ferredoxin oxidoreductase --- benzoyl-CoA reductase --- acetylene hydratase --- [Fe]-hydrogenase --- FeGP cofactor --- guanylylpyridinol --- conformational changes --- X-ray crystallography --- iron-sulfur cluster --- persulfide --- metallocofactor --- frataxin --- Friedreich’s ataxia --- n/a --- metal-dithiolene --- pseudo-Jahn-Teller effect --- CCCP-carbonyl cyanide m-chlorophenyl-hydrazone --- EIPA-5-(N-ethyl-N-isopropyl)-amiloride --- Friedreich's ataxia


Book
Transition Metals in Catalysis : The Functional Relationship of Fe-S Clusters and Molybdenum or Tungsten Cofactor-Containing Enzyme Systems
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Iron–sulfur (FeS) centers are essential protein cofactors in all forms of life. They are involved in many key biological processes. In particular, Fe-S centers not only serve as enzyme cofactors in catalysis and electron transfer, they are also indispensable for the biosynthesis of complex metal-containing cofactors. Among these cofactors are the molybdenum (Moco) and tungsten (Wco) cofactors. Both Moco/Wco biosynthesis and Fe-S cluster assembly are highly conserved among all kingdoms of life. After formation, Fe-S clusters are transferred to carrier proteins, which insert them into recipient apo-proteins. Moco/Wco cofactors are composed of a tricyclic pterin compound, with the metal coordinated to its unique dithiolene group. Moco/Wco biosynthesis starts with an Fe-S cluster-dependent step involving radical/S-adenosylmethionine (SAM) chemistry. The current lack of knowledge of the connection of the assembly/biosynthesis of complex metal-containing cofactors is due to the sheer complexity of their synthesis with regard to both the (genetic) regulation and (chemical) metal center assembly. Studies on these metal-cofactors/cofactor-containing enzymes are important for understanding fundamental cellular processes. They will also provide a comprehensive view of the complex biosynthesis and the catalytic mechanism of metalloenzymes that underlie metal-related human diseases.


Book
Transition Metals in Catalysis : The Functional Relationship of Fe-S Clusters and Molybdenum or Tungsten Cofactor-Containing Enzyme Systems
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Iron–sulfur (FeS) centers are essential protein cofactors in all forms of life. They are involved in many key biological processes. In particular, Fe-S centers not only serve as enzyme cofactors in catalysis and electron transfer, they are also indispensable for the biosynthesis of complex metal-containing cofactors. Among these cofactors are the molybdenum (Moco) and tungsten (Wco) cofactors. Both Moco/Wco biosynthesis and Fe-S cluster assembly are highly conserved among all kingdoms of life. After formation, Fe-S clusters are transferred to carrier proteins, which insert them into recipient apo-proteins. Moco/Wco cofactors are composed of a tricyclic pterin compound, with the metal coordinated to its unique dithiolene group. Moco/Wco biosynthesis starts with an Fe-S cluster-dependent step involving radical/S-adenosylmethionine (SAM) chemistry. The current lack of knowledge of the connection of the assembly/biosynthesis of complex metal-containing cofactors is due to the sheer complexity of their synthesis with regard to both the (genetic) regulation and (chemical) metal center assembly. Studies on these metal-cofactors/cofactor-containing enzymes are important for understanding fundamental cellular processes. They will also provide a comprehensive view of the complex biosynthesis and the catalytic mechanism of metalloenzymes that underlie metal-related human diseases.

Analytical profiles of drug substances and excipients
Author:
ISSN: 00995428 10756280 ISBN: 0122608046 0122608054 0122608035 0122608062 0122608070 0122608089 0122608097 0122608100 0122608119 0122608127 0122608135 0122608143 0122608151 012260816X 0122608178 0122608208 0122608216 0122608224 0122608232 0122608240 9786611742379 1281742376 0080860990 9786611742508 1281742503 0080861121 9786611742416 1281742414 0080861032 9786611742447 1281742449 0080861067 9786611742539 1281742538 0080861156 9786611742430 1281742430 0080861059 9786611742478 1281742473 0080861091 9786611742553 1281742554 0080861172 9786611742386 1281742384 0080861008 9786611742461 1281742465 0080861083 9786611742423 1281742422 0080861040 9786611742393 1281742392 0080861016 9786611713324 1281713325 0080861199 9786611742485 1281742481 0080861105 9786611742492 128174249X 0080861113 9786611742560 1281742562 0080861180 9786611742409 1281742406 0080861024 9786611742546 1281742546 0080861164 9786611742454 1281742457 0080861075 9780122608209 9780122608063 9780122608131 9780122608179 9780122608056 9780122608247 9780122608216 9780122608100 9780122608223 9780122608094 9780122608124 9780122608117 9780122608155 9780122608087 9780122608162 9780122608230 9780122608148 9780122608070 9780122608049 Year: 1972 Publisher: New, York: Academic press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Pharmaceutical Preparations --- analysis --- Drugs --- Pharmaceutical chemistry --- Médicaments --- Chimie pharmaceutique --- Analysis --- Yearbooks. --- Analyse --- Pharmaceutical Preparations - analysis --- Atenolol --- Camphre --- Chloroquine --- Cholecalciferol --- Cimetidine --- Disopyramide (phosphate) --- Indomethacine --- Ketofifene --- Melphalan --- Moxalactam (disodium) --- Oxyphenbutazone --- Pentazocine --- Phenytoine --- Pyridoxine --- Reserpine --- Saccharine --- Salicylamide --- Sulfadadiazine argent --- Sulindac --- Tetracycline (chlorhydrate --- Tolbutamide --- Vitamine d3 --- CHLORTHALIDONE --- IMIPRAMINE HCl --- CISPLATIN --- ANALYTICAL PROFILE --- TRIPELENNAMINE HCl --- XYLOMETAZOLINE HCl --- MEFLOQUINE HCl --- ACIDE IOPOANOIQUE --- LIDOCAINE --- LIDOCAINE HCl --- BENPERIDOL --- HYDRATE DE TERPINE --- ATROPINE --- ISOPROTERENOL --- WARFARIN --- NALOXONE HCl --- DIFLUNISAL --- BACLOFEN --- ACETAMINOPHEN --- HALOTHANE --- Bacitracine --- Bretylium --- Carbamazepine --- Ccyproheptadine --- Cefaclor --- Cefamandole --- Dibenzepine --- Digoxine --- Doxorubicine --- Fluphenazine --- Gentamicine (sulfate) --- Griseofulvine --- Haloperidol --- Khellin --- Lorazepam --- Methadone --- Methoxsalen --- Monographies medicaments --- Nadolol --- Nitrazepam --- Nitroglycerin --- Trifluoroperazine --- Acide ascorbique --- Acide flufenamique --- Aminophylline --- Captopril --- Cefotaxime --- Cefoxitine sodium --- Clofibrate --- Clotrimazole --- Dopamine chlorhydrate --- Ergonovine maleate --- Hexestrol --- Mestranol --- Noscapine --- Penicilline-g benzathine --- Phenylbutazone --- Sulfadiazine --- Amantadine --- Amikacine sulfate --- Benzocaine --- Dibucaine --- Dibucaine chlorhydrate --- Dioctylsulfosuccinate de sodium --- Estrone --- Etomidate --- Heparine sodium --- Hydrocortisone --- Isopropamide --- Metoprolol tartrate --- Phenylpropanolamine chlorhydrate --- Pilocarpine --- Pyrazinamide --- Pyrimethamine --- Quinine chlorhydrate --- Quinine sulfate --- Rutine --- Trimipramine maleate --- AMILORIDE CHLORHYDRATE --- AMINOGLUTETHIMIDE --- CAFEINE --- COCAINE CHLORHYDRATE --- EPHEDRINE CHLORHYDRATE --- OESTRADIOL --- GUANABENZ ACETATE --- IODAMIDE --- LITHIUM CARBONATE --- MAPROTILINE CHLORHYDRATE --- PENICILLIN G --- POTASSIUM --- PIROXICAM --- RANITIDINE --- STRYCHNINE --- VIDARABINE --- ZOMEPIRAC --- SODIUM --- CHLORAMPHENICOL --- LIDOCAINE CHLORHYDRATE --- SODIUM NITROPRUSSIATE --- Acide aminosalicylique --- Azathioprine --- Benzoate de benzyle --- Chlorhydrate d'emetine --- Chlorhydrate de clindamycine --- Chlorhydrate de methylphenidate --- Colchicine --- Cyanocobalamine --- Glibenclamide --- Heroine --- Hydrochlorothiazide --- Ketoprofen --- Nabinole --- Natamycine --- Oxytocine --- Penicillamine --- Phosphate de codeine

Listing 1 - 10 of 13 << page
of 2
>>
Sort by