Listing 1 - 9 of 9 |
Sort by
|
Choose an application
The number of species found at a given point on the planet varies by orders of magnitude, yet large-scale gradients in biodiversity appear to follow some very general patterns. Little mechanistic theory has been formulated to explain the emergence of observed gradients of biodiversity both on land and in the oceans. Based on a comprehensive empirical synthesis of global patterns of species diversity and their drivers, A Theory of Global Biodiversity develops and applies a new theory that can predict such patterns from few underlying processes. The authors show that global patterns of biodiversity fall into four consistent categories, according to where species live: on land or in coastal, pelagic, and deep ocean habitats. The fact that most species groups, from bacteria to whales, appear to follow similar biogeographic patterns of richness within these habitats points toward some underlying structuring principles. Based on empirical analyses of environmental correlates across these habitats, the authors combine aspects of neutral, metabolic, and niche theory into one unifying framework. Applying it to model terrestrial and marine realms, the authors demonstrate that a relatively simple theory that incorporates temperature and community size as driving variables is able to explain divergent patterns of species richness at a global scale. Integrating ecological and evolutionary perspectives, A Theory of Global Biodiversity yields surprising insights into the fundamental mechanisms that shape the distribution of life on our planet.
Biodiversity. --- PET. --- ambient energy. --- ambient temperature. --- biodiversity drivers. --- biodiversity hotspots. --- biodiversity loss. --- biodiversity patterns. --- biodiversity research. --- biodiversity. --- biogeographic patterns. --- coastal biodiversity. --- coastal habitat. --- community size. --- deep-sea biodiversity. --- deep-sea habitat. --- ecological theory. --- empirical data. --- evolution. --- global biodiversity. --- global distribution. --- global patterns. --- global theory. --- habitat. --- macroecological patterns. --- marine biodiversity. --- marine pelagic biodiversity. --- metabolic theory. --- metacommunity model. --- neutral theory. --- niche theory. --- pelagic habitat. --- potential evapotranspiration. --- spatial metacommunity model. --- species diversity. --- species richness. --- temperature. --- terrestrial biodiversity. --- terrestrial habitat. --- unimodal pattern.
Choose an application
The way plants grow and develop organs significantly impacts the overall performance and yield of crop plants. The basic knowledge now available in plant development has the potential to help breeders in generating plants with defined architectural features to improve productivity. Plant translational research effort has steadily increased over the last decade due to the huge increase in the availability of crop genomic resources and Arabidopsis-based sequence annotation systems. However, a consistent gap between fundamental and applied science has yet to be filled. One critical point often brought up is the unreadiness of developmental biologists on one side to foresee agricultural applications for their discoveries, and of the breeders to exploit gene function studies to apply to candidate gene approaches when advantageous on the other. In this book, both developmental biologists and breeders make a special effort to reconcile research on the basic principles of plant development and organogenesis with its applications to crop production and genetic improvement. Fundamental and applied science contributions intertwine and chase each other, giving the reader different but complementary perspectives from only apparently distant corners of the same world.
HD-Zip transcription factors --- Plant in vitro cultures --- plant breeding --- recalcitrant species --- CLV --- wounding --- semi-dwarf --- photoreceptors --- Arabidopsis thaliana --- root development --- morphogenesis --- embryogenesis --- cytokinin --- auxin conjugation --- molecular marker --- Development --- boundaries --- translational research --- proline biosynthesis --- Brassicaceae --- meristem formation --- phytohormones --- stem cells --- meristem --- cytoskeleton --- hydrogen peroxide --- ligule --- genetic improvement --- tree phase change --- Rht18 --- hairy roots --- WUS --- GRETCHEN HAGEN 3 (GH3) IAA-amido synthase group II --- photoperiod --- linkage map --- SAM --- ground tissue --- signaling --- differentiation --- protoxylem --- ambient temperature --- gibberellins --- molecular regulation --- proximodistal patterning --- wheat-rye hybrids --- RolD --- somatic cell selection --- flowering time --- plant development and organogenesis --- grass --- root --- wheat --- crop productivity --- genetic transformation --- regulatory networks --- light environment --- rol genes --- root plasticity --- morphogenic --- stem apical meristem --- auxin --- shoot meristem --- Arabidopsis --- organogenesis --- transformation --- Vasculature --- Organogenesis --- radial patterning --- plant development --- reduced height --- root apical meristem --- Asteraceae --- vernalization --- KNOX transcription factors --- locule --- plant cell and tissue culture --- Agrobacterium rhizogenes --- genes of reproductive isolation --- cell wall --- lateral root cap --- CLE --- auxin minimum --- age
Choose an application
This volume presents recent research achievements concerning the molecular genetic basis of agronomic traits in rice. Rice (Oryza sativa L.) is the most important food crop in the world, being a staple food for more than half of the world’s population. Recent improvements in living standards have increased the worldwide demand for high-yielding and high-quality rice cultivars. To develop novel cultivars with superior agronomic performance, we need to understand the molecular basis of agronomically important traits related to grain yield, grain quality, disease resistance, and abiotic stress tolerance. Decoding the whole rice genome sequence revealed that ,while there are more than 37,000 genes in the ~400 Mbp rice genome, there are only about 3000 genes whose molecular functions are characterized in detail. We collected in this volume the continued research efforts of scholars that elucidate genetic networks and the molecular mechanisms controlling agronomically important traits in rice.
Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- grain number per panicle --- grain yield --- phase transition --- rachis branch --- rice panicle --- spikelet specialisation --- rice --- flowering time --- ambient temperature fluctuation --- chromosome segment substitution line (CSSL) --- quantitative trait locus (QTL) --- drought tolerance --- cold tolerance --- Oryza sativa --- OsCRP1 --- chloroplast ribonucleoproteins --- NAD(P)H dehydrogenase (NDH) complex --- nitrogen use efficiency --- transcriptional regulation --- nitrate reductase --- nitrate transporter --- glutamate synthase --- potassium chlorate --- QTL --- food shortage --- yield --- grain size --- OsBRKq1 --- genome editing --- homozygous --- proteomics --- C4 rice --- proto-Kranz --- photosynthetic efficiency --- crop improvement --- spike-stalk injection --- transcription factor --- OsWRKY55 --- drought response --- plant growth --- OsAP2-39 --- inflorescence architecture --- BLH homedomain protein --- branching pattern --- verticillate primary branch --- transcriptome analysis --- hormone pathways --- japonica DT3 --- submergence tolerance --- marker-assisted backcross --- foreground selection --- background selection --- three-dimensional imaging --- shoot apical meristem --- root tip --- n/a
Choose an application
This book contains a collection of recent peer-reviewed articles on the topic "Crop Adaptation to Elevated CO2 and Temperature" published in Plants. Topics range from meta-analyses of crop responses, to descriptions and results of large-scale screening efforts, to molecular studies of changes in gene expression related to fruit quality.
Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- adaptation --- breeding --- CO2 --- CWR --- seed yield --- goji berry --- sugar metabolism --- elevated CO2 --- functional domain --- gene cloning and expression --- Lens culinaris --- climate change adaptation --- root development --- root depth distribution --- climate change --- heat stress --- nitrogen assimilation --- nitrogen metabolism --- nitrogen uptake --- Solanum --- tomato --- warming --- Solanum tuberosum --- tuber --- sink organ --- ambient temperature --- cell proliferation --- grain quality --- cereals --- yield and quality --- high [CO2] --- predicted future climate --- high temperature --- grain quality traits --- drought stress --- Genovese cultivar --- photosynthesis --- stomatal conductance --- chlorophyll --- carotenoids --- antioxidant defense metabolites --- early growth stage --- ethylene --- IAA conjugates --- indole-3-acetic acid --- invasiveness --- lupine seedlings --- simulated conditions --- warming simulation --- grain yield --- biomass --- bread wheat --- genotypes --- barley --- CO2 enrichment --- Hordeum vulgare L. --- water-use efficiency --- yield --- gravitropic angle of curvature --- initial root --- lateral root number --- primary root --- root system architecture --- simulated warming --- n/a
Choose an application
This book contains a collection of recent peer-reviewed articles on the topic "Crop Adaptation to Elevated CO2 and Temperature" published in Plants. Topics range from meta-analyses of crop responses, to descriptions and results of large-scale screening efforts, to molecular studies of changes in gene expression related to fruit quality.
adaptation --- breeding --- CO2 --- CWR --- seed yield --- goji berry --- sugar metabolism --- elevated CO2 --- functional domain --- gene cloning and expression --- Lens culinaris --- climate change adaptation --- root development --- root depth distribution --- climate change --- heat stress --- nitrogen assimilation --- nitrogen metabolism --- nitrogen uptake --- Solanum --- tomato --- warming --- Solanum tuberosum --- tuber --- sink organ --- ambient temperature --- cell proliferation --- grain quality --- cereals --- yield and quality --- high [CO2] --- predicted future climate --- high temperature --- grain quality traits --- drought stress --- Genovese cultivar --- photosynthesis --- stomatal conductance --- chlorophyll --- carotenoids --- antioxidant defense metabolites --- early growth stage --- ethylene --- IAA conjugates --- indole-3-acetic acid --- invasiveness --- lupine seedlings --- simulated conditions --- warming simulation --- grain yield --- biomass --- bread wheat --- genotypes --- barley --- CO2 enrichment --- Hordeum vulgare L. --- water-use efficiency --- yield --- gravitropic angle of curvature --- initial root --- lateral root number --- primary root --- root system architecture --- simulated warming --- n/a
Choose an application
This book contains a collection of recent peer-reviewed articles on the topic "Crop Adaptation to Elevated CO2 and Temperature" published in Plants. Topics range from meta-analyses of crop responses, to descriptions and results of large-scale screening efforts, to molecular studies of changes in gene expression related to fruit quality.
Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- adaptation --- breeding --- CO2 --- CWR --- seed yield --- goji berry --- sugar metabolism --- elevated CO2 --- functional domain --- gene cloning and expression --- Lens culinaris --- climate change adaptation --- root development --- root depth distribution --- climate change --- heat stress --- nitrogen assimilation --- nitrogen metabolism --- nitrogen uptake --- Solanum --- tomato --- warming --- Solanum tuberosum --- tuber --- sink organ --- ambient temperature --- cell proliferation --- grain quality --- cereals --- yield and quality --- high [CO2] --- predicted future climate --- high temperature --- grain quality traits --- drought stress --- Genovese cultivar --- photosynthesis --- stomatal conductance --- chlorophyll --- carotenoids --- antioxidant defense metabolites --- early growth stage --- ethylene --- IAA conjugates --- indole-3-acetic acid --- invasiveness --- lupine seedlings --- simulated conditions --- warming simulation --- grain yield --- biomass --- bread wheat --- genotypes --- barley --- CO2 enrichment --- Hordeum vulgare L. --- water-use efficiency --- yield --- gravitropic angle of curvature --- initial root --- lateral root number --- primary root --- root system architecture --- simulated warming
Choose an application
Multiscale entropy (MSE) measures to evaluate the complexity of time series by taking into account the multiple time scales in physical systems were proposed in the early 2000s. Since then, these approaches have received a great deal of attention and have been used in a wide range of applications. Multivariate approaches have also been developed. The algorithms for an MSE approach are composed of two main steps: (i) a coarse-graining procedure to represent the system’s dynamics on different scales and (ii) the entropy computation for the original signal and for the coarse-grained time series to evaluate the irregularity for each scale. Moreover, different entropy measures have been associated with the coarse-graining approach, each one having its advantages and drawbacks. In this Special Issue, we gathered 24 papers focusing on either the theory or applications of MSE approaches. These papers can be divided into two groups: papers that propose new developments in entropy-based measures or improve the understanding of existing ones (9 papers) and papers that propose new applications of existing entropy-based measures (14 papers). Moreover, one paper presents a review of cross-entropy methods and their multiscale approaches.
History of engineering & technology --- electrocardiogram --- heart rate variability --- multiscale distribution entropy --- RR interval --- short-term inter-beat interval --- Alzheimer disease --- functional near infra-red spectroscopy --- signal complexity --- clock drawing test --- digit span test --- corsi block tapping test --- structural health monitoring --- multi-scale --- composite cross-sample entropy --- PD --- fault diagnosis --- variational mode decomposition --- multi-scale dispersion entropy --- HMSVM --- multiscale entropy --- embodied media --- tele-communication --- humanoid --- prefrontal cortex --- human behavior --- complexity --- page view --- sample entropy --- Wikipedia --- missing values --- physiological data --- medical information --- postural stability index --- stability states --- ensemble empirical mode decomposition --- gait --- Multiscale Permutation Entropy --- ordinal patterns --- estimator variance --- Cramér–Rao Lower Bound --- finite-length signals --- nonlinear dynamics --- multiscale indices --- cardiac risk stratification --- Holter --- long term monitoring --- multifractal spectrum --- multiscale time irreversibility --- predictability --- multiscale analysis --- entropy rate --- memory effect --- financial time series --- entropy --- cardiac autonomic neuropathy --- diabetes --- mental workload --- motif --- multi-scale entropy --- permutation entropy --- HRV --- SVM --- multivariate multiscale dispersion entropy --- multivariate time series --- electroencephalogram --- magnetoencephalogram --- CPD --- EEG --- sleep staging --- tensor decomposition --- preterm neonate --- bearing fault diagnosis --- weak fault --- multi-component signal --- local robust principal component analysis --- multi-scale permutation entropy --- brain complexity --- dynamic functional connectivity --- edge complexity --- fluid intelligence --- node complexity --- resting-state functional magnetic resonance imaging --- aging --- consolidation --- default mode network --- episodic memory --- fMRI --- network complexity --- resting state --- copula density --- dependency structures --- Voronoi decomposition --- ambient temperature --- telemetry --- systolic blood pressure --- pulse interval --- thermoregulation --- vasopressin --- center of pressure --- falls --- postural control --- cross-entropy --- multiscale cross-entropy --- asynchrony --- coupling --- cross-sample entropy --- cross-approximate entropy --- cross-distribution entropy --- cross-fuzzy entropy --- cross-conditional entropy --- eye movement events detection --- nonlinear analysis time series analysis --- approximate entropy --- fuzzy entropy --- multilevel entropy map --- time-scale decomposition --- heart sound --- ICEEMDAN --- RCMDE --- Fisher ratio --- biometric characterization --- multi-scale entropy (MSE) --- vector autoregressive fractionally integrated (VARFI) models --- heart rate variability (HRV) --- systolic arterial pressure (SAP) --- multivariate data
Choose an application
Multiscale entropy (MSE) measures to evaluate the complexity of time series by taking into account the multiple time scales in physical systems were proposed in the early 2000s. Since then, these approaches have received a great deal of attention and have been used in a wide range of applications. Multivariate approaches have also been developed. The algorithms for an MSE approach are composed of two main steps: (i) a coarse-graining procedure to represent the system’s dynamics on different scales and (ii) the entropy computation for the original signal and for the coarse-grained time series to evaluate the irregularity for each scale. Moreover, different entropy measures have been associated with the coarse-graining approach, each one having its advantages and drawbacks. In this Special Issue, we gathered 24 papers focusing on either the theory or applications of MSE approaches. These papers can be divided into two groups: papers that propose new developments in entropy-based measures or improve the understanding of existing ones (9 papers) and papers that propose new applications of existing entropy-based measures (14 papers). Moreover, one paper presents a review of cross-entropy methods and their multiscale approaches.
electrocardiogram --- heart rate variability --- multiscale distribution entropy --- RR interval --- short-term inter-beat interval --- Alzheimer disease --- functional near infra-red spectroscopy --- signal complexity --- clock drawing test --- digit span test --- corsi block tapping test --- structural health monitoring --- multi-scale --- composite cross-sample entropy --- PD --- fault diagnosis --- variational mode decomposition --- multi-scale dispersion entropy --- HMSVM --- multiscale entropy --- embodied media --- tele-communication --- humanoid --- prefrontal cortex --- human behavior --- complexity --- page view --- sample entropy --- Wikipedia --- missing values --- physiological data --- medical information --- postural stability index --- stability states --- ensemble empirical mode decomposition --- gait --- Multiscale Permutation Entropy --- ordinal patterns --- estimator variance --- Cramér–Rao Lower Bound --- finite-length signals --- nonlinear dynamics --- multiscale indices --- cardiac risk stratification --- Holter --- long term monitoring --- multifractal spectrum --- multiscale time irreversibility --- predictability --- multiscale analysis --- entropy rate --- memory effect --- financial time series --- entropy --- cardiac autonomic neuropathy --- diabetes --- mental workload --- motif --- multi-scale entropy --- permutation entropy --- HRV --- SVM --- multivariate multiscale dispersion entropy --- multivariate time series --- electroencephalogram --- magnetoencephalogram --- CPD --- EEG --- sleep staging --- tensor decomposition --- preterm neonate --- bearing fault diagnosis --- weak fault --- multi-component signal --- local robust principal component analysis --- multi-scale permutation entropy --- brain complexity --- dynamic functional connectivity --- edge complexity --- fluid intelligence --- node complexity --- resting-state functional magnetic resonance imaging --- aging --- consolidation --- default mode network --- episodic memory --- fMRI --- network complexity --- resting state --- copula density --- dependency structures --- Voronoi decomposition --- ambient temperature --- telemetry --- systolic blood pressure --- pulse interval --- thermoregulation --- vasopressin --- center of pressure --- falls --- postural control --- cross-entropy --- multiscale cross-entropy --- asynchrony --- coupling --- cross-sample entropy --- cross-approximate entropy --- cross-distribution entropy --- cross-fuzzy entropy --- cross-conditional entropy --- eye movement events detection --- nonlinear analysis time series analysis --- approximate entropy --- fuzzy entropy --- multilevel entropy map --- time-scale decomposition --- heart sound --- ICEEMDAN --- RCMDE --- Fisher ratio --- biometric characterization --- multi-scale entropy (MSE) --- vector autoregressive fractionally integrated (VARFI) models --- heart rate variability (HRV) --- systolic arterial pressure (SAP) --- multivariate data
Choose an application
Multiscale entropy (MSE) measures to evaluate the complexity of time series by taking into account the multiple time scales in physical systems were proposed in the early 2000s. Since then, these approaches have received a great deal of attention and have been used in a wide range of applications. Multivariate approaches have also been developed. The algorithms for an MSE approach are composed of two main steps: (i) a coarse-graining procedure to represent the system’s dynamics on different scales and (ii) the entropy computation for the original signal and for the coarse-grained time series to evaluate the irregularity for each scale. Moreover, different entropy measures have been associated with the coarse-graining approach, each one having its advantages and drawbacks. In this Special Issue, we gathered 24 papers focusing on either the theory or applications of MSE approaches. These papers can be divided into two groups: papers that propose new developments in entropy-based measures or improve the understanding of existing ones (9 papers) and papers that propose new applications of existing entropy-based measures (14 papers). Moreover, one paper presents a review of cross-entropy methods and their multiscale approaches.
History of engineering & technology --- electrocardiogram --- heart rate variability --- multiscale distribution entropy --- RR interval --- short-term inter-beat interval --- Alzheimer disease --- functional near infra-red spectroscopy --- signal complexity --- clock drawing test --- digit span test --- corsi block tapping test --- structural health monitoring --- multi-scale --- composite cross-sample entropy --- PD --- fault diagnosis --- variational mode decomposition --- multi-scale dispersion entropy --- HMSVM --- multiscale entropy --- embodied media --- tele-communication --- humanoid --- prefrontal cortex --- human behavior --- complexity --- page view --- sample entropy --- Wikipedia --- missing values --- physiological data --- medical information --- postural stability index --- stability states --- ensemble empirical mode decomposition --- gait --- Multiscale Permutation Entropy --- ordinal patterns --- estimator variance --- Cramér–Rao Lower Bound --- finite-length signals --- nonlinear dynamics --- multiscale indices --- cardiac risk stratification --- Holter --- long term monitoring --- multifractal spectrum --- multiscale time irreversibility --- predictability --- multiscale analysis --- entropy rate --- memory effect --- financial time series --- entropy --- cardiac autonomic neuropathy --- diabetes --- mental workload --- motif --- multi-scale entropy --- permutation entropy --- HRV --- SVM --- multivariate multiscale dispersion entropy --- multivariate time series --- electroencephalogram --- magnetoencephalogram --- CPD --- EEG --- sleep staging --- tensor decomposition --- preterm neonate --- bearing fault diagnosis --- weak fault --- multi-component signal --- local robust principal component analysis --- multi-scale permutation entropy --- brain complexity --- dynamic functional connectivity --- edge complexity --- fluid intelligence --- node complexity --- resting-state functional magnetic resonance imaging --- aging --- consolidation --- default mode network --- episodic memory --- fMRI --- network complexity --- resting state --- copula density --- dependency structures --- Voronoi decomposition --- ambient temperature --- telemetry --- systolic blood pressure --- pulse interval --- thermoregulation --- vasopressin --- center of pressure --- falls --- postural control --- cross-entropy --- multiscale cross-entropy --- asynchrony --- coupling --- cross-sample entropy --- cross-approximate entropy --- cross-distribution entropy --- cross-fuzzy entropy --- cross-conditional entropy --- eye movement events detection --- nonlinear analysis time series analysis --- approximate entropy --- fuzzy entropy --- multilevel entropy map --- time-scale decomposition --- heart sound --- ICEEMDAN --- RCMDE --- Fisher ratio --- biometric characterization --- multi-scale entropy (MSE) --- vector autoregressive fractionally integrated (VARFI) models --- heart rate variability (HRV) --- systolic arterial pressure (SAP) --- multivariate data
Listing 1 - 9 of 9 |
Sort by
|