Narrow your search
Listing 1 - 7 of 7
Sort by

Book
Allosteric modulation of G protein-coupled receptors
Author:
ISBN: 0128197714 0128197722 9780128197721 9780128197714 Year: 2022 Publisher: London, England : Academic Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Protein Allostery in Drug Discovery
Authors: ---
ISBN: 9811387192 9811387184 Year: 2019 Publisher: Singapore : Springer Singapore : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book focuses on protein allostery in drug discovery. Allosteric regulation, ʹthe second secret of lifeʹ, fine-tunes virtually most biological processes and controls physiological activities. Allostery can both cause human diseases and contribute to development of new therapeutics. Allosteric drugs exhibit unparalleled advantages compared to conventional orthosteric drugs, rendering the development of allosteric modulators as an appealing strategy to improve selectivity and pharmacodynamic properties in drug leads. The Series delineates the immense significance of protein allostery—as demonstrated by recent advances in the repertoires of the concept, its mechanistic mechanisms, and networks, characteristics of allosteric proteins, modulators, and sites, development of computational and experimental methods to predict allosteric sites, small-molecule allosteric modulators of protein kinases and G-protein coupled receptors, engineering allostery, and the underlying role of allostery in precise medicine. Comprehensive understanding of protein allostery is expected to guide the rational design of allosteric drugs for the treatment of human diseases. The book would be useful for scientists and students in the field of protein science and Pharmacology etc. .

Allosteric Regulatory Enzymes
Author:
ISBN: 1281067334 9786611067335 0387728910 0387728880 1441944532 Year: 2008 Publisher: New York, NY : Springer US : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

All enzymes are remarkable since they have the ability to increase the rate of a chemical reaction, often by more than a billion-fold. Allosteric enzymes are even more amazing because the have the additional ability to change their rate in response to cellular activators or inhibitors. This enables them to control the pathway in which they are the regulatory enzyme. Since the effector molecules represent the current status of the cell for a given metabolic pathway, this results in very responsive and balanced metabolic states, and makes it possible for cells and organisms to be appropriately dynamic, and responsive, in a changing environment. This book provides a logical introduction to the limits for enzyme function as dictated by the factors that are limits for life. This book presents a complete description of all the mechanisms used for changing enzyme acticity. Eight enzymes are used as model systems after extensive study of their mechanisms. Wherever possible, the human form of the enzyme is used to illustrate the regulatory features. While authors often emphasize the few enzymes that have the most remarkable catalytic rates, this survey of enzymes has led to the author's appreciation of some important, general conclusions: 1. Most enzymes are not exceptionally fast; they are always good enough for their specific catalytic step. 2. Although enzymes could always be much faster if they changed so as to bind their substrates more weakly, actual enzymes must be able to discriminate in favor of their special substrate, and therefore they have sacrificed speed to obtain better binding. This means that specific control of individual metabolic steps is more important than overall speed. 3. Results for many hundreds of enzymes establish that a lower limit for a normal catalytic activity is 1 s-1. Most enzymes have a catalytic rate between 10 and 300 s-1. 4. Allosteric regulation always results in a chance in the enzymes's affinity for its substrate. Even V-type enzymes (named for their large chance in catalytic velocity) always have a corresponding change in affinity for their substrate. Thomas Traut has a PhD in molecular biology and has studied enzymes since 1974. As a professor at the University of North Carolina at Chapel Hill, he has focused on enzyme regulation and taught advanced enzymology to graduate students. Important findings from his research helped to define the mechanism of allosteric control for dissociating enzymes. .


Book
Molecular Modeling in Drug Design
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a printed edition of the Special Issue Molecular Modeling in Drug Design that was published in Molecules

Keywords

metadynamics --- natural compounds --- virtual screening --- probe energies --- molecular dynamics simulation --- human ecto-5?-nucleotidase --- neural networks --- quantitative structure-activity relationship (QSAR) --- artificial intelligence --- allosterism --- in silico screening --- drug discovery --- amyloid fibrils --- mechanical stability --- adenosine receptors --- adenosine receptor --- ligand binding --- promiscuous mechanism --- AutoGrid --- dynamic light scattering --- resultant dipole moment --- density-based clustering --- Alzheimer’s disease --- drug design --- biophenols --- enzymatic assays --- all-atom molecular dynamics simulation --- fragment screening --- adenosine --- docking --- molecular docking --- cosolvent molecular dynamics --- turbidimetry --- squalene synthase (SQS) --- molecular recognition --- protein-peptide interactions --- extracellular loops --- FimH --- binding affinity --- rational drug design --- de novo design --- hyperlipidemia --- AR ligands --- aggregation --- property prediction --- PPI inhibition --- deep learning --- proteins --- quantitative structure-property prediction (QSPR) --- protein protein interactions --- boron cluster --- target-focused pharmacophore modeling --- ligand–protofiber interactions --- structure-based drug design --- scoring function --- grid maps --- solvent effect --- adhesion --- molecular dynamics --- Traditional Chinese Medicine --- steered molecular dynamics --- interaction energy --- EphA2-ephrin A1 --- molecular modeling --- method development


Book
Molecular Modeling in Drug Design
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a printed edition of the Special Issue Molecular Modeling in Drug Design that was published in Molecules

Keywords

metadynamics --- natural compounds --- virtual screening --- probe energies --- molecular dynamics simulation --- human ecto-5?-nucleotidase --- neural networks --- quantitative structure-activity relationship (QSAR) --- artificial intelligence --- allosterism --- in silico screening --- drug discovery --- amyloid fibrils --- mechanical stability --- adenosine receptors --- adenosine receptor --- ligand binding --- promiscuous mechanism --- AutoGrid --- dynamic light scattering --- resultant dipole moment --- density-based clustering --- Alzheimer’s disease --- drug design --- biophenols --- enzymatic assays --- all-atom molecular dynamics simulation --- fragment screening --- adenosine --- docking --- molecular docking --- cosolvent molecular dynamics --- turbidimetry --- squalene synthase (SQS) --- molecular recognition --- protein-peptide interactions --- extracellular loops --- FimH --- binding affinity --- rational drug design --- de novo design --- hyperlipidemia --- AR ligands --- aggregation --- property prediction --- PPI inhibition --- deep learning --- proteins --- quantitative structure-property prediction (QSPR) --- protein protein interactions --- boron cluster --- target-focused pharmacophore modeling --- ligand–protofiber interactions --- structure-based drug design --- scoring function --- grid maps --- solvent effect --- adhesion --- molecular dynamics --- Traditional Chinese Medicine --- steered molecular dynamics --- interaction energy --- EphA2-ephrin A1 --- molecular modeling --- method development


Book
Molecular Modeling in Drug Design
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a printed edition of the Special Issue Molecular Modeling in Drug Design that was published in Molecules

Keywords

metadynamics --- natural compounds --- virtual screening --- probe energies --- molecular dynamics simulation --- human ecto-5?-nucleotidase --- neural networks --- quantitative structure-activity relationship (QSAR) --- artificial intelligence --- allosterism --- in silico screening --- drug discovery --- amyloid fibrils --- mechanical stability --- adenosine receptors --- adenosine receptor --- ligand binding --- promiscuous mechanism --- AutoGrid --- dynamic light scattering --- resultant dipole moment --- density-based clustering --- Alzheimer’s disease --- drug design --- biophenols --- enzymatic assays --- all-atom molecular dynamics simulation --- fragment screening --- adenosine --- docking --- molecular docking --- cosolvent molecular dynamics --- turbidimetry --- squalene synthase (SQS) --- molecular recognition --- protein-peptide interactions --- extracellular loops --- FimH --- binding affinity --- rational drug design --- de novo design --- hyperlipidemia --- AR ligands --- aggregation --- property prediction --- PPI inhibition --- deep learning --- proteins --- quantitative structure-property prediction (QSPR) --- protein protein interactions --- boron cluster --- target-focused pharmacophore modeling --- ligand–protofiber interactions --- structure-based drug design --- scoring function --- grid maps --- solvent effect --- adhesion --- molecular dynamics --- Traditional Chinese Medicine --- steered molecular dynamics --- interaction energy --- EphA2-ephrin A1 --- molecular modeling --- method development --- metadynamics --- natural compounds --- virtual screening --- probe energies --- molecular dynamics simulation --- human ecto-5?-nucleotidase --- neural networks --- quantitative structure-activity relationship (QSAR) --- artificial intelligence --- allosterism --- in silico screening --- drug discovery --- amyloid fibrils --- mechanical stability --- adenosine receptors --- adenosine receptor --- ligand binding --- promiscuous mechanism --- AutoGrid --- dynamic light scattering --- resultant dipole moment --- density-based clustering --- Alzheimer’s disease --- drug design --- biophenols --- enzymatic assays --- all-atom molecular dynamics simulation --- fragment screening --- adenosine --- docking --- molecular docking --- cosolvent molecular dynamics --- turbidimetry --- squalene synthase (SQS) --- molecular recognition --- protein-peptide interactions --- extracellular loops --- FimH --- binding affinity --- rational drug design --- de novo design --- hyperlipidemia --- AR ligands --- aggregation --- property prediction --- PPI inhibition --- deep learning --- proteins --- quantitative structure-property prediction (QSPR) --- protein protein interactions --- boron cluster --- target-focused pharmacophore modeling --- ligand–protofiber interactions --- structure-based drug design --- scoring function --- grid maps --- solvent effect --- adhesion --- molecular dynamics --- Traditional Chinese Medicine --- steered molecular dynamics --- interaction energy --- EphA2-ephrin A1 --- molecular modeling --- method development

Listing 1 - 7 of 7
Sort by