Narrow your search

Library

KU Leuven (9)

ULiège (7)

VUB (6)

UAntwerpen (5)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

VIVES (4)

More...

Resource type

book (11)


Language

English (11)


Year
From To Submit

2023 (1)

2019 (1)

2018 (1)

2017 (1)

2016 (2)

More...
Listing 1 - 10 of 11 << page
of 2
>>
Sort by

Book
The Norm Residue Theorem in Motivic Cohomology
Authors: ---
ISBN: 0691189633 Year: 2019 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents the complete proof of the Bloch-Kato conjecture and several related conjectures of Beilinson and Lichtenbaum in algebraic geometry. Brought together here for the first time, these conjectures describe the structure of étale cohomology and its relation to motivic cohomology and Chow groups.Although the proof relies on the work of several people, it is credited primarily to Vladimir Voevodsky. The authors draw on a multitude of published and unpublished sources to explain the large-scale structure of Voevodsky's proof and introduce the key figures behind its development. They go on to describe the highly innovative geometric constructions of Markus Rost, including the construction of norm varieties, which play a crucial role in the proof. The book then addresses symmetric powers of motives and motivic cohomology operations.Comprehensive and self-contained, The Norm Residue Theorem in Motivic Cohomology unites various components of the proof that until now were scattered across many sources of varying accessibility, often with differing hypotheses, definitions, and language.

Abelian Varieties with Complex Multiplication and Modular Functions
Author:
ISBN: 0691016569 1400883946 9780691016566 Year: 2016 Volume: 46 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Reciprocity laws of various kinds play a central role in number theory. In the easiest case, one obtains a transparent formulation by means of roots of unity, which are special values of exponential functions. A similar theory can be developed for special values of elliptic or elliptic modular functions, and is called complex multiplication of such functions. In 1900 Hilbert proposed the generalization of these as the twelfth of his famous problems. In this book, Goro Shimura provides the most comprehensive generalizations of this type by stating several reciprocity laws in terms of abelian varieties, theta functions, and modular functions of several variables, including Siegel modular functions. This subject is closely connected with the zeta function of an abelian variety, which is also covered as a main theme in the book. The third topic explored by Shimura is the various algebraic relations among the periods of abelian integrals. The investigation of such algebraicity is relatively new, but has attracted the interest of increasingly many researchers. Many of the topics discussed in this book have not been covered before. In particular, this is the first book in which the topics of various algebraic relations among the periods of abelian integrals, as well as the special values of theta and Siegel modular functions, are treated extensively.

Keywords

Ordered algebraic structures --- 512.74 --- Abelian varieties --- Modular functions --- Functions, Modular --- Elliptic functions --- Group theory --- Number theory --- Varieties, Abelian --- Geometry, Algebraic --- Algebraic groups. Abelian varieties --- 512.74 Algebraic groups. Abelian varieties --- Abelian varieties. --- Modular functions. --- Abelian extension. --- Abelian group. --- Abelian variety. --- Absolute value. --- Adele ring. --- Affine space. --- Affine variety. --- Algebraic closure. --- Algebraic equation. --- Algebraic extension. --- Algebraic number field. --- Algebraic structure. --- Algebraic variety. --- Analytic manifold. --- Automorphic function. --- Automorphism. --- Big O notation. --- CM-field. --- Characteristic polynomial. --- Class field theory. --- Coefficient. --- Complete variety. --- Complex conjugate. --- Complex multiplication. --- Complex number. --- Complex torus. --- Corollary. --- Degenerate bilinear form. --- Differential form. --- Direct product. --- Direct proof. --- Discrete valuation ring. --- Divisor. --- Eigenvalues and eigenvectors. --- Embedding. --- Endomorphism. --- Existential quantification. --- Field of fractions. --- Finite field. --- Fractional ideal. --- Function (mathematics). --- Fundamental theorem. --- Galois extension. --- Galois group. --- Galois theory. --- Generic point. --- Ground field. --- Group theory. --- Groupoid. --- Hecke character. --- Homology (mathematics). --- Homomorphism. --- Identity element. --- Integer. --- Irreducibility (mathematics). --- Irreducible representation. --- Lie group. --- Linear combination. --- Linear subspace. --- Local ring. --- Modular form. --- Natural number. --- Number theory. --- Polynomial. --- Prime factor. --- Prime ideal. --- Projective space. --- Projective variety. --- Rational function. --- Rational mapping. --- Rational number. --- Real number. --- Residue field. --- Riemann hypothesis. --- Root of unity. --- Scientific notation. --- Semisimple algebra. --- Simple algebra. --- Singular value. --- Special case. --- Subgroup. --- Subring. --- Subset. --- Summation. --- Theorem. --- Vector space. --- Zero element.


Book
Lectures on Complex Analytic Varieties (MN-14), Volume 14
Author:
ISBN: 0691080291 1322884943 069164554X 1400869293 9781400869299 9780691618548 0691618542 Year: 2015 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a sequel to Lectures on Complex Analytic Varieties: The Local Paranwtrization Theorem (Mathematical Notes 10, 1970). Its unifying theme is the study of local properties of finite analytic mappings between complex analytic varieties; these mappings are those in several dimensions that most closely resemble general complex analytic mappings in one complex dimension. The purpose of this volume is rather to clarify some algebraic aspects of the local study of complex analytic varieties than merely to examine finite analytic mappings for their own sake.Originally published in 1970.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Complex analysis --- Analytic spaces --- Mathematics --- Physical Sciences & Mathematics --- Calculus --- Spaces, Analytic --- Analytic functions --- Functions of several complex variables --- Algebra homomorphism. --- Algebraic curve. --- Algebraic extension. --- Algebraic surface. --- Algebraic variety. --- Analytic continuation. --- Analytic function. --- Associated prime. --- Atlas (topology). --- Automorphism. --- Bernhard Riemann. --- Big O notation. --- Branch point. --- Change of variables. --- Characterization (mathematics). --- Codimension. --- Coefficient. --- Cohomology. --- Complete intersection. --- Complex analysis. --- Complex conjugate. --- Complex dimension. --- Complex number. --- Connected component (graph theory). --- Corollary. --- Critical point (mathematics). --- Diagram (category theory). --- Dimension (vector space). --- Dimension. --- Disjoint union. --- Divisor. --- Equation. --- Equivalence class. --- Exact sequence. --- Existential quantification. --- Finitely generated module. --- Geometry. --- Hamiltonian mechanics. --- Holomorphic function. --- Homeomorphism. --- Homological dimension. --- Homomorphism. --- Hypersurface. --- Ideal (ring theory). --- Identity element. --- Induced homomorphism. --- Inequality (mathematics). --- Injective function. --- Integral domain. --- Invertible matrix. --- Irreducible component. --- Isolated singularity. --- Isomorphism class. --- Jacobian matrix and determinant. --- Linear map. --- Linear subspace. --- Local ring. --- Mathematical induction. --- Mathematics. --- Maximal element. --- Maximal ideal. --- Meromorphic function. --- Modular arithmetic. --- Module (mathematics). --- Module homomorphism. --- Monic polynomial. --- Monomial. --- Neighbourhood (mathematics). --- Noetherian. --- Open set. --- Parametric equation. --- Parametrization. --- Permutation. --- Polynomial ring. --- Polynomial. --- Power series. --- Quadratic form. --- Quotient module. --- Regular local ring. --- Removable singularity. --- Ring (mathematics). --- Ring homomorphism. --- Row and column vectors. --- Scalar multiplication. --- Scientific notation. --- Several complex variables. --- Sheaf (mathematics). --- Special case. --- Subalgebra. --- Submanifold. --- Subset. --- Summation. --- Surjective function. --- Taylor series. --- Theorem. --- Three-dimensional space (mathematics). --- Topological space. --- Vector space. --- Weierstrass preparation theorem. --- Zero divisor. --- Fonctions de plusieurs variables complexes --- Variétés complexes

Algebraic Curves over a Finite Field
Authors: --- ---
ISBN: 1400847419 9781400847419 1306988608 9781306988605 9781400847426 1400847427 0691096791 9780691096797 9780691096797 Year: 2013 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correcting codes, and cryptology. Unlike other books, this one emphasizes the algebraic geometry rather than the function field approach to algebraic curves. The authors begin by developing the general theory of curves over any field, highlighting peculiarities occurring for positive characteristic and requiring of the reader only basic knowledge of algebra and geometry. The special properties that a curve over a finite field can have are then discussed. The geometrical theory of linear series is used to find estimates for the number of rational points on a curve, following the theory of Stöhr and Voloch. The approach of Hasse and Weil via zeta functions is explained, and then attention turns to more advanced results: a state-of-the-art introduction to maximal curves over finite fields is provided; a comprehensive account is given of the automorphism group of a curve; and some applications to coding theory and finite geometry are described. The book includes many examples and exercises. It is an indispensable resource for researchers and the ideal textbook for graduate students.

Keywords

Curves, Algebraic. --- Finite fields (Algebra) --- Modular fields (Algebra) --- Algebra, Abstract --- Algebraic fields --- Galois theory --- Modules (Algebra) --- Algebraic curves --- Algebraic varieties --- Abelian group. --- Abelian variety. --- Affine plane. --- Affine space. --- Affine variety. --- Algebraic closure. --- Algebraic curve. --- Algebraic equation. --- Algebraic extension. --- Algebraic function. --- Algebraic geometry. --- Algebraic integer. --- Algebraic number field. --- Algebraic number theory. --- Algebraic number. --- Algebraic variety. --- Algebraically closed field. --- Applied mathematics. --- Automorphism. --- Birational invariant. --- Characteristic exponent. --- Classification theorem. --- Clifford's theorem. --- Combinatorics. --- Complex number. --- Computation. --- Cyclic group. --- Cyclotomic polynomial. --- Degeneracy (mathematics). --- Degenerate conic. --- Divisor (algebraic geometry). --- Divisor. --- Dual curve. --- Dual space. --- Elliptic curve. --- Equation. --- Fermat curve. --- Finite field. --- Finite geometry. --- Finite group. --- Formal power series. --- Function (mathematics). --- Function field. --- Fundamental theorem. --- Galois extension. --- Galois theory. --- Gauss map. --- General position. --- Generic point. --- Geometry. --- Homogeneous polynomial. --- Hurwitz's theorem. --- Hyperelliptic curve. --- Hyperplane. --- Identity matrix. --- Inequality (mathematics). --- Intersection number (graph theory). --- Intersection number. --- J-invariant. --- Line at infinity. --- Linear algebra. --- Linear map. --- Mathematical induction. --- Mathematics. --- Menelaus' theorem. --- Modular curve. --- Natural number. --- Number theory. --- Parity (mathematics). --- Permutation group. --- Plane curve. --- Point at infinity. --- Polar curve. --- Polygon. --- Polynomial. --- Power series. --- Prime number. --- Projective plane. --- Projective space. --- Quadratic transformation. --- Quadric. --- Resolution of singularities. --- Riemann hypothesis. --- Scalar multiplication. --- Scientific notation. --- Separable extension. --- Separable polynomial. --- Sign (mathematics). --- Singular point of a curve. --- Special case. --- Subgroup. --- Sylow theorems. --- System of linear equations. --- Tangent. --- Theorem. --- Transcendence degree. --- Upper and lower bounds. --- Valuation ring. --- Variable (mathematics). --- Vector space.


Book
Non-Abelian Minimal Closed Ideals of Transitive Lie Algebras. (MN-25)
Author:
ISBN: 0691643024 1400853656 9781400853656 9781306988988 1306988985 0691082510 9780691615622 Year: 2014 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

The purpose of this book is to provide a self-contained account, accessible to the non-specialist, of algebra necessary for the solution of the integrability problem for transitive pseudogroup structures.Originally published in 1981.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Lie algebras. --- Ideals (Algebra) --- Pseudogroups. --- Global analysis (Mathematics) --- Lie groups --- Algebraic ideals --- Algebraic fields --- Rings (Algebra) --- Algebras, Lie --- Algebra, Abstract --- Algebras, Linear --- Lie algebras --- Pseudogroups --- 512.81 --- 512.81 Lie groups --- Ideals (Algebra). --- Lie, Algèbres de. --- Idéaux (algèbre) --- Pseudogroupes (mathématiques) --- Ordered algebraic structures --- Analytical spaces --- Addition. --- Adjoint representation. --- Algebra homomorphism. --- Algebra over a field. --- Algebraic extension. --- Algebraic structure. --- Analytic function. --- Associative algebra. --- Automorphism. --- Bilinear form. --- Bilinear map. --- Cartesian product. --- Closed graph theorem. --- Codimension. --- Coefficient. --- Cohomology. --- Commutative ring. --- Commutator. --- Compact space. --- Complex conjugate. --- Complexification (Lie group). --- Complexification. --- Conjecture. --- Constant term. --- Continuous function. --- Contradiction. --- Corollary. --- Counterexample. --- Diagram (category theory). --- Differentiable manifold. --- Differential form. --- Differential operator. --- Dimension (vector space). --- Dimension. --- Direct sum. --- Discrete space. --- Donald C. Spencer. --- Dual basis. --- Embedding. --- Epimorphism. --- Existential quantification. --- Exterior (topology). --- Exterior algebra. --- Exterior derivative. --- Faithful representation. --- Formal power series. --- Graded Lie algebra. --- Ground field. --- Homeomorphism. --- Homomorphism. --- Hyperplane. --- I0. --- Indeterminate (variable). --- Infinitesimal transformation. --- Injective function. --- Integer. --- Integral domain. --- Invariant subspace. --- Invariant theory. --- Isotropy. --- Jacobi identity. --- Levi decomposition. --- Lie algebra. --- Linear algebra. --- Linear map. --- Linear subspace. --- Local diffeomorphism. --- Mathematical induction. --- Maximal ideal. --- Module (mathematics). --- Monomorphism. --- Morphism. --- Natural transformation. --- Non-abelian. --- Partial differential equation. --- Pseudogroup. --- Pullback (category theory). --- Simple Lie group. --- Space form. --- Special case. --- Subalgebra. --- Submanifold. --- Subring. --- Summation. --- Symmetric algebra. --- Symplectic vector space. --- Telescoping series. --- Theorem. --- Topological algebra. --- Topological space. --- Topological vector space. --- Topology. --- Transitive relation. --- Triviality (mathematics). --- Unit vector. --- Universal enveloping algebra. --- Vector bundle. --- Vector field. --- Vector space. --- Weak topology. --- Lie, Algèbres de. --- Idéaux (algèbre) --- Pseudogroupes (mathématiques)


Book
Fourier Analysis on Local Fields. (MN-15)
Author:
ISBN: 0691618127 0691645167 1400871336 9781400871339 0691081654 9780691081656 Year: 2015 Volume: 15 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents a development of the basic facts about harmonic analysis on local fields and the n-dimensional vector spaces over these fields. It focuses almost exclusively on the analogy between the local field and Euclidean cases, with respect to the form of statements, the manner of proof, and the variety of applications.The force of the analogy between the local field and Euclidean cases rests in the relationship of the field structures that underlie the respective cases. A complete classification of locally compact, non-discrete fields gives us two examples of connected fields (real and complex numbers); the rest are local fields (p-adic numbers, p-series fields, and their algebraic extensions). The local fields are studied in an effort to extend knowledge of the reals and complexes as locally compact fields.The author's central aim has been to present the basic facts of Fourier analysis on local fields in an accessible form and in the same spirit as in Zygmund's Trigonometric Series (Cambridge, 1968) and in Introduction to Fourier Analysis on Euclidean Spaces by Stein and Weiss (1971).Originally published in 1975.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Fourier analysis. --- Local fields (Algebra) --- Fields, Local (Algebra) --- Algebraic fields --- Analysis, Fourier --- Mathematical analysis --- Corps algébriques --- Fourier analysis --- 511 --- 511 Number theory --- Number theory --- Local fields (Algebra). --- Harmonic analysis. Fourier analysis --- Fourier Analysis --- Abelian group. --- Absolute continuity. --- Absolute value. --- Addition. --- Additive group. --- Algebraic extension. --- Algebraic number field. --- Bessel function. --- Beta function. --- Borel measure. --- Bounded function. --- Bounded variation. --- Boundedness. --- Calculation. --- Cauchy–Riemann equations. --- Characteristic function (probability theory). --- Complex analysis. --- Conformal map. --- Continuous function. --- Convolution. --- Coprime integers. --- Corollary. --- Coset. --- Determinant. --- Dimension (vector space). --- Dimension. --- Dirichlet kernel. --- Discrete space. --- Distribution (mathematics). --- Endomorphism. --- Field of fractions. --- Finite field. --- Formal power series. --- Fourier series. --- Fourier transform. --- Gamma function. --- Gelfand. --- Haar measure. --- Haar wavelet. --- Half-space (geometry). --- Hankel transform. --- Hardy's inequality. --- Harmonic analysis. --- Harmonic function. --- Homogeneous distribution. --- Integer. --- Lebesgue integration. --- Linear combination. --- Linear difference equation. --- Linear map. --- Linear space (geometry). --- Local field. --- Lp space. --- Maximal ideal. --- Measurable function. --- Measure (mathematics). --- Mellin transform. --- Metric space. --- Modular form. --- Multiplicative group. --- Norbert Wiener. --- P-adic number. --- Poisson kernel. --- Power series. --- Prime ideal. --- Probability. --- Product metric. --- Rational number. --- Regularization (mathematics). --- Requirement. --- Ring (mathematics). --- Ring of integers. --- Scalar multiplication. --- Scientific notation. --- Sign (mathematics). --- Smoothness. --- Special case. --- Special functions. --- Subgroup. --- Subring. --- Support (mathematics). --- Theorem. --- Topological space. --- Unitary operator. --- Vector space. --- Analyse harmonique (mathématiques) --- Analyse harmonique (mathématiques) --- Corps algébriques


Book
Asymptotic Differential Algebra and Model Theory of Transseries
Authors: --- ---
ISBN: 1400885418 Year: 2017 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems.This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.

Keywords

Series, Arithmetic. --- Divergent series. --- Asymptotic expansions. --- Differential algebra. --- Algebra, Differential --- Differential fields --- Algebraic fields --- Differential equations --- Asymptotic developments --- Asymptotes --- Convergence --- Difference equations --- Divergent series --- Functions --- Numerical analysis --- Series, Divergent --- Series --- Arithmetic series --- Progressions, Arithmetic --- Equalizer Theorem. --- H-asymptotic couple. --- H-asymptotic field. --- H-field. --- Hahn Embedding Theorem. --- Hahn space. --- Johnson's Theorem. --- Krull's Principal Ideal Theorem. --- Kähler differentials. --- Liouville closed H-field. --- Liouville closure. --- Newton degree. --- Newton diagram. --- Newton multiplicity. --- Newton tree. --- Newton weight. --- Newton-Liouville closure. --- Riccati transform. --- Scanlon's extension. --- Zariski topology. --- algebraic differential equation. --- algebraic extension. --- angular component map. --- asymptotic couple. --- asymptotic differential algebra. --- asymptotic field. --- asymptotic relation. --- asymptotics. --- closed H-asymptotic couple. --- closure properties. --- coarsening. --- commutative algebra. --- commutative ring. --- compositional conjugation. --- constant. --- continuity. --- d-henselian. --- d-henselianity. --- decomposition. --- derivation. --- differential field extension. --- differential field. --- differential module. --- differential polynomial. --- differential-hensel. --- differential-henselian field. --- differential-henselianity. --- differential-valued extension. --- differentially closed field. --- dominant part. --- equivalence. --- eventual quantities. --- exponential integral. --- extension. --- filtered module. --- gaussian extension. --- grid-based transseries. --- henselian valued field. --- homogeneous differential polynomial. --- immediate extension. --- integral. --- integrally closed domain. --- linear differential equation. --- linear differential operator. --- linear differential polynomial. --- mathematics. --- maximal immediate extension. --- model companion. --- monotonicity. --- noetherian ring. --- ordered abelian group. --- ordered differential field. --- ordered set. --- pre-differential-valued field. --- pseudocauchy sequence. --- pseudoconvergence. --- quantifier elimination. --- rational asymptotic integration. --- regular local ring. --- residue field. --- simple differential ring. --- small derivation. --- special cut. --- specialization. --- substructure. --- transseries. --- triangular automorphism. --- triangular derivation. --- valuation topology. --- valuation. --- value group. --- valued abelian group. --- valued differential field. --- valued field. --- valued vector space.


Book
The arithmetic of polynomial dynamical pairs
Authors: ---
ISBN: 0691235481 Year: 2023 Publisher: Princeton : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Charles Favre and Thomas Gauthier present new mathematical research in the field of arithmetic dynamics. Specifically, the authors study one-dimensional algebraic families of pairs given by a polynomial with a marked point. Combining tools from arithmetic geometry and holomorphic dynamics, they prove an 'unlikely intersection' statement for such pairs, thereby demonstrating strong rigidity features for them. They further describe one-dimensional families in the moduli space of polynomials containing infinitely many postcritically finite parameters, proving the dynamical André-Oort conjecture for curves in this context, originally stated by Baker and DeMarco.

Keywords

MATHEMATICS / Geometry / Algebraic. --- Affine plane. --- Affine space. --- Affine transformation. --- Algebraic closure. --- Algebraic curve. --- Algebraic equation. --- Algebraic extension. --- Algebraic surface. --- Algebraic variety. --- Algebraically closed field. --- Analysis. --- Analytic function. --- Analytic geometry. --- Approximation. --- Arithmetic dynamics. --- Asymmetric graph. --- Ball (mathematics). --- Bifurcation theory. --- Boundary (topology). --- Cantor set. --- Characterization (mathematics). --- Chebyshev polynomials. --- Coefficient. --- Combinatorics. --- Complex manifold. --- Complex number. --- Computation. --- Computer programming. --- Conjugacy class. --- Connected component (graph theory). --- Continuous function (set theory). --- Coprime integers. --- Correspondence theorem (group theory). --- Counting. --- Critical graph. --- Cubic function. --- Datasheet. --- Disk (mathematics). --- Divisor (algebraic geometry). --- Elliptic curve. --- Equation. --- Equidistribution theorem. --- Equivalence relation. --- Euclidean topology. --- Existential quantification. --- Fixed point (mathematics). --- Function space. --- Geometric (company). --- Graph (discrete mathematics). --- Hamiltonian mechanics. --- Hausdorff dimension. --- Hausdorff measure. --- Holomorphic function. --- Inequality (mathematics). --- Instance (computer science). --- Integer. --- Intermediate value theorem. --- Intersection (set theory). --- Inverse-square law. --- Irreducible component. --- Iteration. --- Jordan curve theorem. --- Julia set. --- Limit of a sequence. --- Line (geometry). --- Metric space. --- Moduli space. --- Moment (mathematics). --- Montel's theorem. --- P-adic number. --- Parameter. --- Pascal's Wager. --- Periodic point. --- Polynomial. --- Power series. --- Primitive polynomial (field theory). --- Projective line. --- Quotient ring. --- Rational number. --- Realizability. --- Renormalization. --- Riemann surface. --- Ring of integers. --- Scientific notation. --- Set (mathematics). --- Sheaf (mathematics). --- Sign (mathematics). --- Stone–Weierstrass theorem. --- Subharmonic function. --- Support (mathematics). --- Surjective function. --- Theorem. --- Theory. --- Topology. --- Transfer principle. --- Union (set theory). --- Unit disk. --- Variable (computer science). --- Variable (mathematics). --- Zariski topology. --- Polynomials. --- Dynamics. --- Geometry, Algebraic. --- Algebraic geometry --- Geometry --- Dynamical systems --- Kinetics --- Mathematics --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics --- Algebra --- Algebraic geometry. --- Mathematics.


Book
Theory of Lie Groups (PMS-8), Volume 8
Author:
ISBN: 1400883857 Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This famous book was the first treatise on Lie groups in which a modern point of view was adopted systematically, namely, that a continuous group can be regarded as a global object. To develop this idea to its fullest extent, Chevalley incorporated a broad range of topics, such as the covering spaces of topological spaces, analytic manifolds, integration of complete systems of differential equations on a manifold, and the calculus of exterior differential forms. The book opens with a short description of the classical groups: unitary groups, orthogonal groups, symplectic groups, etc. These special groups are then used to illustrate the general properties of Lie groups, which are considered later. The general notion of a Lie group is defined and correlated with the algebraic notion of a Lie algebra; the subgroups, factor groups, and homomorphisms of Lie groups are studied by making use of the Lie algebra. The last chapter is concerned with the theory of compact groups, culminating in Peter-Weyl's theorem on the existence of representations. Given a compact group, it is shown how one can construct algebraically the corresponding Lie group with complex parameters which appears in the form of a certain algebraic variety (associated algebraic group). This construction is intimately related to the proof of the generalization given by Tannaka of Pontrjagin's duality theorem for Abelian groups. The continued importance of Lie groups in mathematics and theoretical physics make this an indispensable volume for researchers in both fields.

Keywords

Continuous groups. --- Additive group. --- Adjoint representation. --- Algebra over a field. --- Algebraic extension. --- Algebraic variety. --- Algebraically closed field. --- Analytic function. --- Analytic manifold. --- Automorphism. --- Axiom of countability. --- Ball (mathematics). --- Cardinal number. --- Characteristic polynomial. --- Coefficient. --- Commutator subgroup. --- Complex number. --- Connected component (graph theory). --- Continuous function (set theory). --- Continuous function. --- Coordinate system. --- Coset. --- Countable set. --- Covering group. --- Covering space. --- Differential algebra. --- Differential calculus. --- Differential form. --- Differential of a function. --- Dual space. --- Eigenvalues and eigenvectors. --- Endomorphism. --- Equivalence class. --- Existential quantification. --- Exponential function. --- Exterior algebra. --- Fundamental group. --- Galois group. --- General topology. --- Geometry. --- Group (mathematics). --- Group theory. --- Hermitian matrix. --- Homeomorphism. --- Homogeneous space. --- Homomorphism. --- Homotopy group. --- Identity element. --- Identity matrix. --- Infinitesimal transformation. --- Integer. --- Invariant subspace. --- Irreducible representation. --- Kronecker product. --- Lie algebra. --- Lie group. --- Linear function. --- Linear map. --- Linear space (geometry). --- Linear subspace. --- Linearization. --- Locally connected space. --- Manifold. --- Mathematical induction. --- Matrix exponential. --- Modular arithmetic. --- Module (mathematics). --- Monodromy. --- Morphism. --- Open set. --- Orthogonal group. --- Parametric equation. --- Permutation. --- Power series. --- Projective plane. --- Real number. --- Regular matrix. --- Representation theory. --- Riemann surface. --- Simply connected space. --- Skew-symmetric matrix. --- Special case. --- Subalgebra. --- Subgroup. --- Submanifold. --- Subset. --- Summation. --- Symplectic geometry. --- Symplectic group. --- Tangent space. --- Theorem. --- Topological group. --- Topological space. --- Topology. --- Trigonometric polynomial. --- Union (set theory). --- Uniqueness theorem. --- Unitary group. --- Unitary matrix. --- Variable (mathematics). --- Vector space.


Book
Elliptic Curves. (MN-40), Volume 40
Author:
ISBN: 0691186901 Year: 2018 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

An elliptic curve is a particular kind of cubic equation in two variables whose projective solutions form a group. Modular forms are analytic functions in the upper half plane with certain transformation laws and growth properties. The two subjects--elliptic curves and modular forms--come together in Eichler-Shimura theory, which constructs elliptic curves out of modular forms of a special kind. The converse, that all rational elliptic curves arise this way, is called the Taniyama-Weil Conjecture and is known to imply Fermat's Last Theorem. Elliptic curves and the modeular forms in the Eichler- Shimura theory both have associated L functions, and it is a consequence of the theory that the two kinds of L functions match. The theory covered by Anthony Knapp in this book is, therefore, a window into a broad expanse of mathematics--including class field theory, arithmetic algebraic geometry, and group representations--in which the concidence of L functions relates analysis and algebra in the most fundamental ways. Developing, with many examples, the elementary theory of elliptic curves, the book goes on to the subject of modular forms and the first connections with elliptic curves. The last two chapters concern Eichler-Shimura theory, which establishes a much deeper relationship between the two subjects. No other book in print treats the basic theory of elliptic curves with only undergraduate mathematics, and no other explains Eichler-Shimura theory in such an accessible manner.

Keywords

Curves, Elliptic. --- Affine plane (incidence geometry). --- Affine space. --- Affine variety. --- Algebra homomorphism. --- Algebraic extension. --- Algebraic geometry. --- Algebraic integer. --- Algebraic number theory. --- Algebraic number. --- Analytic continuation. --- Analytic function. --- Associative algebra. --- Automorphism. --- Big O notation. --- Binary quadratic form. --- Birch and Swinnerton-Dyer conjecture. --- Bounded set (topological vector space). --- Change of variables. --- Characteristic polynomial. --- Coefficient. --- Compactification (mathematics). --- Complex conjugate. --- Complex manifold. --- Complex number. --- Conjecture. --- Coprime integers. --- Cusp form. --- Cyclic group. --- Degeneracy (mathematics). --- Dimension (vector space). --- Dirichlet character. --- Dirichlet series. --- Division algebra. --- Divisor. --- Eigenform. --- Eigenvalues and eigenvectors. --- Elementary symmetric polynomial. --- Elliptic curve. --- Elliptic function. --- Elliptic integral. --- Equation. --- Euler product. --- Finitely generated abelian group. --- Fourier analysis. --- Function (mathematics). --- Functional equation. --- General linear group. --- Group homomorphism. --- Group isomorphism. --- Hecke operator. --- Holomorphic function. --- Homomorphism. --- Ideal (ring theory). --- Integer matrix. --- Integer. --- Integral domain. --- Intersection (set theory). --- Inverse function theorem. --- Invertible matrix. --- Irreducible polynomial. --- Isogeny. --- J-invariant. --- Linear fractional transformation. --- Linear map. --- Liouville's theorem (complex analysis). --- Mathematical induction. --- Meromorphic function. --- Minimal polynomial (field theory). --- Modular form. --- Monic polynomial. --- Möbius transformation. --- Number theory. --- P-adic number. --- Polynomial ring. --- Power series. --- Prime factor. --- Prime number theorem. --- Prime number. --- Principal axis theorem. --- Principal ideal domain. --- Principal ideal. --- Projective line. --- Projective variety. --- Quadratic equation. --- Quadratic function. --- Quadratic reciprocity. --- Riemann surface. --- Riemann zeta function. --- Simultaneous equations. --- Special case. --- Summation. --- Taylor series. --- Theorem. --- Torsion subgroup. --- Transcendence degree. --- Uniformization theorem. --- Unique factorization domain. --- Variable (mathematics). --- Weierstrass's elliptic functions. --- Weil conjecture.

Listing 1 - 10 of 11 << page
of 2
>>
Sort by